

Dalton Transactions

Electronic Supporting information for:

Non-palindromic Anthracen-diyl Bis(alkylidynes)

Benjamin J. Frogley, Anthony F. Hill[†] and Steven S. Welsh

Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory, ACT 2601, Australia. † Corresponding author. E-mail: <u>a.hill@anu.edu.au</u>

Author Contributions

AFH was responsible for funding acquisition and project administration. BJF and SSW were responsible for conducting the experiments and characterisation of the products.

All authors, listed alphabetically, contributed to the preparation of the original manuscript and subsequent drafts.

Cartesian Coordinates

1. $[Tm(CO)_2W=CC(C_6H_4)_2CC=W(CO)_2Tp]$ (5d)

Figure S1. Optimised Geometry of 5d

Ato	m x	У	z
W	-3.277594	-1.978401	0.172277
W	3.542165	4.270937	-0.972450
S	-1.579119	-3.893164	0.773741
S	-5.292282	-3.839049	0.195591
S	-3.765777	-1.639312	2.690565
0	-5.439118	0.223861	-0.467362
Ν	-6.975540	-3.297114	2.241518
0	-3.080668	-2.723407	-2.881791
Ν	3.549862	4.388941	-3.205042
С	-3.170319	-2.450892	-1.760280
Ν	4.689758	4.428200	-3.928853
Ν	-5.246197	-4.428712	2.929171
С	2.184702	3.093844	-0.729976
С	0.162445	-1.188033	-2.003320

Atom	x	У	z	
н	-0.596909	-1.946803	-1.858127	
С	-2.532715	-5.330192	0.873856	
С	0.110608	-0.007115	-1.202039	
Ν	5.298253	5.770932	-1.290375	
С	-1.920737	1.582865	1.555778	
н	-2.701342	0.840031	1.679071	
Ν	5.200047	2.841816	-1.438864	
Ν	6.119484	3.081253	-2.399136	
С	-2.674759	-2.738178	3.459161	
С	-1.890500	2.690628	2.352492	
н	-2.661829	2.836529	3.103049	
0	4.032080	4.157153	2.144421	
С	2.152422	0.748713	-2.345593	
н	2.922124	1.500567	-2.482583	
С	0.117866	3.479610	1.267903	
н	0.906863	4.214868	1.157780	
С	-6.060711	-4.186604	4.018693	
н	-5.791487	-4.536406	5.002190	
С	-0.915153	1.363169	0.564392	
С	2.232817	5.767515	-0.745941	
С	-7.132958	-3.480276	3.600021	
н	-7.989536	-3.099318	4.132284	
С	-5.816049	-3.868226	1.837874	
С	5.468142	1.638510	-0.929937	
С	-0.924365	0.203525	-0.254668	
С	6.961152	2.037361	-2.491433	
С	-7.851939	-2.520464	1.382560	
н	-8.181706	-3.126406	0.537213	
н	-7.319896	-1.645331	1.003109	
н	-8.713910	-2.203692	1.971456	
С	1.138160	0.973699	-1.364274	

Atom	x	У	z
С	3.858470	4.215060	1.002537
С	3.018558	4.432211	-5.382148
н	2.448188	4.443207	-6.297693
С	7.104255	6.570867	-2.271553
С	-0.857416	3.654049	2.205817
н	-0.845352	4.533654	2.842424
С	6.581343	1.082464	-1.564181
н	7.040966	0.124723	-1.377070
Ν	6.191362	5.585187	-2.286810
С	6.802578	7.433376	-1.232074
н	7.332815	8.326658	-0.940902
С	-4.650097	-0.587635	-0.227366
С	1.138415	2.137696	-0.552825
С	0.125876	2.332287	0.418336
С	5.658629	6.882656	-0.647696
С	4.394371	4.457595	-5.239493
Ν	-2.821572	-4.057111	3.699925
Ν	-2.547450	-6.268399	-0.101401
Ν	-1.473498	-2.363028	3.947740
Ν	-3.342219	-5.767436	1.862723
С	-0.891133	-1.043559	3.760695
н	-0.714878	-0.870384	2.695751
н	0.051900	-1.003041	4.306990
н	-1.570093	-0.275148	4.131844
С	-1.686996	-4.504802	4.349383
н	-1.581886	-5.538156	4.638068
С	-1.856157	-6.144817	-1.373028
н	-2.217837	-5.264084	-1.907496
н	-2.059238	-7.041796	-1.959673
н	-0.782407	-6.042279	-1.208790
С	-3.871546	-6.986105	1.485358

H -4.555148 -7.518398 2.126890 O 1.463303 6.620423 -0.617386 C -0.841838 -3.459886 4.496132 H 0.135864 -3.389196 4.944706	
O 1.463303 6.620423 -0.617386 C -0.841838 -3.459886 4.496132 H 0.135864 -3.389196 4.944706	
C -0.841838 -3.459886 4.496132 H 0.135864 -3.389196 4.944706	
H 0.135864 -3.389196 4.944706	
C -3.384092 -7.301990 0.265419	
H -3.544891 -8.159581 -0.367756	
C 2.158737 -0.386564 -3.102063	
H 2.939352 -0.539242 -3.841558	
B 6.065464 4.375849 -3.234978	
H 6.950789 4.386673 -4.050140	
B -3.854492 -5.074228 3.150746	
H -3.989056 -5.937074 3.991039	
C 1.153132 -1.373094 -2.922938	
H 1.174171 -2.279193 -3.521130	
C 2.535427 4.388988 -4.071865	
C -1.964026 -0.764970 -0.081039	
H 7.768092 2.052008 -3.209039	
H 4.840807 1.240391 -0.145708	
H 1.520622 4.351422 -3.703225	
H 5.185241 4.493613 -5.973960	
H 7.900480 6.587382 -3.001098	
H 5.078278 7.225332 0.197437	

2. [Tm(CO)₂W=CC(C₆H₄)₂CC=W(CO)₂Tp]⁺ [5d]⁺

Figure S2. Optimised Geometry of [5d]*			
Aton	n x	У	z
w	-3.010650	-1.915829	0.640315
W	3.420586	4.503556	-1.325056
s	-1.578261	-4.095704	0.824970
S	-5.226175	-3.314431	0.168667
S	-3.411994	-1.986993	3.117338
0	-4.950663	0.570955	0.507240
Ν	-6.945497	-2.981673	2.244639
0	-2.733033	-2.211243	-2.502062
Ν	3.533788	4.225757	-3.514361
С	-2.874227	-2.100667	-1.366407
Ν	4.710785	4.201752	-4.180262
Ν	-5.409612	-4.455062	2.712424
С	2.156018	3.256837	-0.875001
С	0.611582	-1.361522	-1.246261
н	-0.070003	-2.152450	-0.950865
С	-2.730760	-5.365608	0.571063
С	0.442559	-0.066816	-0.705925
Ν	5.048272	6.038635	-1.810056
С	-1.716260	1.812426	1.785867
н	-2.394303	1.023160	2.090205
Ν	5.181946	3.157683	-1.412401
Ν	6.137569	3.278442	-2.360449
С	-2.622678	-3.420592	3.703444

SUPPORTING INFORMATION

С	-1.803545	3.058399	2.362096
н	-2.565150	3.254611	3.109821
0	3.752107	5.144058	1.762560
С	2.403773	0.653406	-1.973271
н	3.098401	1.435923	-2.257981
С	0.073504	3.825384	1.057909
н	0.769548	4.607446	0.778114
С	-6.249578	-4.351028	3.803575
н	-6.092872	-4.947612	4.687950
С	-0.730494	1.532738	0.813690
С	1.979795	5.913901	-1.439498
С	-7.203025	-3.434884	3.520563
н	-8.041219	-3.077069	4.096564
С	-5.846343	-3.602631	1.762300
С	5.522064	2.119527	-0.642826
С	-0.650210	0.234889	0.187600
С	7.069457	2.327275	-2.188142
С	-7.708857	-1.963891	1.537060
н	-8.071458	-2.359801	0.587677
н	-7.081631	-1.092259	1.344772
н	-8.553719	-1.675925	2.164323
С	1.362633	0.954661	-1.062419
С	3.643598	4.921666	0.638379
С	3.119560	3.891478	-5.690852
н	2.602007	3.732711	-6.623992
С	6.845501	6.802145	-2.831960
С	-0.907166	4.075919	1.988375
н	-0.984399	5.059395	2.439986
С	6.713941	1.553803	-1.095902
н	7.245416	0.710222	-0.684428
Ν	6.016526	5.753767	-2.711473
С	6.412518	7.809702	-1.985548
н	6.852505	8.783728	-1.840855
С	-4.255640	-0.346531	0.555234
С	1.232107	2.272654	-0.497287
С	0.193590	2.550823	0.456455

This journal is © The Royal Society of Chemistry 2021

3

Please do not adjust margins

SUPPORTING INFORMATION

С	5.280870	7.279235	-1.368240
С	4.484794	4.006032	-5.489332
Ν	-3.011970	-4.704700	3.608586
Ν	-2.790312	-6.090016	-0.567472
Ν	-1.472096	-3.387147	4.405216
Ν	-3.679248	-5.840206	1.404372
С	-0.699646	-2.183820	4.671125
н	-0.455604	-1.693625	3.726601
н	0.216134	-2.471484	5.187778
н	-1.274659	-1.495643	5.293798
С	-2.077336	-5.486085	4.260175
н	-2.184618	-6.557433	4.313895
С	-1.937208	-5.894304	-1.728670
н	-2.044377	-4.874103	-2.101019
н	-2.248753	-6.597985	-2.500931
н	-0.894132	-6.074632	-1.464495
С	-4.339833	-6.871951	0.766394
н	-5.145228	-7.402267	1.248417
0	1.137580	6.696293	-1.495972
С	-1.115792	-4.673585	4.753636
н	-0.230501	-4.885842	5.331258
С	-3.793929	-7.030508	-0.459508
н	-4.015584	-7.724617	-1.253933
С	2.540069	-0.613151	-2.489909
н	3.346386	-0.828669	-3.183455
в	6.044571	4.388077	-3.427718
н	6.972441	4.325309	-4.187765
В	-4.157719	-5.369905	2.800862
н	-4.487922	-6.357754	3.412573
С	1.641830	-1.629876	-2.117335
н	1.760543	-2.631406	-2.518559
С	2.567070	4.041114	-4.419041
С	-1.630387	-0.713053	0.438570
н	7.919678	2.271445	-2.851751
н	4.889059	1.838395	0.186332
н	1.533895	4.025651	-4.103624

4

	Da	alton	Tran	sactions
--	----	-------	------	----------

н	5.310881	3.962646	-6.183547
н	7.685295	6.758446	-3.509781
н	4.623528	7.721909	-0.633162

3. HC≡CC(C₆H₄)₂CC≡CH

Figure S3. Optimised Geometry of HC=CC(C₆H₄)₂CC=CH

m x	У	z
-4.599999	0.000000	1.247802
-3.656169	0.000000	0.711167
-2.475481	0.000000	2.485324
-2.480614	0.000000	1.400575
-2.480614	0.000000	-1.400575
-1.226785	0.000000	0.715336
-3.656169	0.000000	-0.711167
-1.226785	0.000000	-0.715336
0.000000	0.000000	1.412881
-4.599999	0.000000	-1.247802
-2.475481	0.000000	-2.485324
1.226785	0.000000	0.715336
2.480614	0.000000	1.400575
1.226785	0.000000	-0.715336
	 x 4.599999 3.656169 -2.475481 -2.480614 -2.480614 -1.226785 0.00000 -4.599999 -2.475481 1.226785 2.480614 1.226785 	x y 4.599999 0.00000 -3.656169 0.00000 -2.475481 0.00000 -2.480614 0.00000 -2.480614 0.00000 -1.226785 0.00000 -3.656169 0.00000 -1.226785 0.00000 -4.599999 0.00000 -2.475481 0.00000 -1.226785 0.00000 -2.475481 0.00000 -2.475481 0.00000 -2.475481 0.00000 -2.475481 0.00000 -2.475481 0.00000 -2.475481 0.00000 -2.475485 0.00000

н	2.475481	0.000000	-2.485324
С	0.000000	0.000000	-1.412881
С	3.656169	0.000000	0.711167
Н	2.475481	0.000000	2.485324
Н	4.599999	0.000000	1.247802
С	3.656169	0.000000	-0.711167
Н	4.599999	0.000000	-1.247802
С	2.480614	0.000000	-1.400575
С	0.000000	0.000000	-2.843566
Н	0.000000	0.000000	-5.117870
С	0.000000	0.000000	-4.051019
С	0.000000	0.000000	2.843566
Н	0.000000	0.000000	5.117870
С	0.000000	0.000000	4.051019

4. HC(C₆H₄)₂CH

Figure S4. Optimised Geometry of HC(C₆H₄)₂CH

Ato	m x	У	z
н	-4.594978	0.000199	1.245822
С	-3.648684	0.000080	0.713206
н	-2.470576	0.000249	2.490833
С	-2.473995	0.000117	1.403842
С	-2.473995	-0.000117	-1.403842
С	-1.218674	0.000022	0.717527
С	-3.648684	-0.000080	-0.713206
С	-1.218674	-0.000022	-0.717527

SUPPORTING INFORMATION

С	0.000000	0.000000	1.398638	С	2.473995	-0.000117	1.403842	н	4.594978	-0.000199	1.245822
н	-4.594978	-0.000199	-1.245822	С	1.218674	0.000022	-0.717527	С	3.648684	0.000080	-0.713206
н	0.000000	0.000000	-2.486697	н	2.470576	0.000249	-2.490833	Н	4.594978	0.000199	-1.245822
н	-2.470576	-0.000249	-2.490833	С	0.000000	0.000000	-1.398638	С	2.473995	0.000117	-1.403842
С	1.218674	-0.000022	0.717527	С	3.648684	-0.000080	0.713206				
н	0.000000	0.000000	2.486697	н	2.470576	-0.000249	2.490833				

Please do not adjust margins

Dalton Transactions

Selected Spectra

Dalton Transactions

SUPPORTING INFORMATION

This journal is © The Royal Society of Chemistry 2021

7

Please do not adjust margins

SUPPORTING INFORMATION

Dalton Transactions

Figure S8. Cyclic Voltammogram (CH₂Cl₂/[NBu₄][PF₆] 0.1 M) at 25 °C at 100 mV s⁻¹ of [W{=CC(C₆H₄)₂CBr}(CO)₂(Tp*)] (1a).

This journal is © The Royal Society of Chemistry 2021

Dalton Trans., 2021, 00, 1-3 |

SUPPORTING INFORMATION

Dalton Transactions

Figure S9b. Electronic spectrum (CH_2Cl_2) of $[W{\equiv}CC(C_6H_4)_2CBr}(CO)_2(Tp^*)]$ (1a).

SUPPORTING INFORMATION

Dalton Transactions

Figure S9b. Electronic spectrum (CH₂Cl₂) of $[W{\equiv}CC(C_6H_4)_2CBr}(CO)_2(Tp^*)]$ (1a).

This journal is © The Royal Society of Chemistry 2021

SUPPORTING INFORMATION

Dalton Transactions

Figure S10. Infrared spectrum (CH₂Cl₂) of $[W{\equiv CC(C_6H_4)_2CBr}(CO)_2(Tp^*)]$ (1a).

Dalton Transactions

SUPPORTING INFORMATION

This journal is © The Royal Society of Chemistry 2021

13

Please do not adjust margins

SUPPORTING INFORMATION

 $\label{eq:Figure S13.} Figure S13. Cyclic Voltammogram (CH_2Cl_2/[NBu_4][PF_6] \ 0.1 \ M) \ at \ 25 \ ^{\circ}C \ at \ 100 \ mV \ s^{-1} \ of \ [W{=}CC(C_6H_4)_2CBr{}(CO)_2(Tp)] \ (1b).$

This journal is © The Royal Society of Chemistry 2021

Dalton Trans., 2021, 00, 1-3 |

SUPPORTING INFORMATION

Dalton Transactions

Figure S14a. Electronic spectrum (CH₂Cl₂) of $[W{\equiv CC(C_6H_4)_2CBr}(CO)_2(Tp)]$ (1b).

SUPPORTING INFORMATION

Dalton Transactions

Figure S14b. Electronic spectrum (CH₂Cl₂) of $[W{\equiv CC(C_6H_4)_2CBr}(CO)_2(Tp)]$ (1b).

This journal is © The Royal Society of Chemistry 2021

SUPPORTING INFORMATION

Dalton Transactions

SUPPORTING INFORMATION

Figure S16. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ) of [W{≡CC(C₆H₄)₂CBr}(CO)₂(Tm)] (**1c**).

This journal is © The Royal Society of Chemistry 2021

19

Please do not adjust margins

SUPPORTING INFORMATION

Dalton Transactions

Figure S17. ${}^{13}C{}^{1H}$ NMR (176 MHz, CDCl₃, 25 °C, δ) of [W{=CC(C₆H₄)₂CBr}(CO)₂(Tm)] (1c).

SUPPORTING INFORMATION

This journal is © The Royal Society of Chemistry 2021

Dalton Trans., 2021, 00, 1-3 |

SUPPORTING INFORMATION

Dalton Transactions

Figure S19. Infrared spectrum (CH_2Cl_2, cm^{-1}) of $[W{\equiv}CC(C_6H_4)_2CBr}(CO)_2(Tm)]$ (1c).

SUPPORTING INFORMATION

Dalton Transactions

 $\label{eq:Figure S20a.} \mbox{Electronic spectrum (CH_2Cl_2) of } [W\{ \equiv CC(C_6H_4)_2CBr\}(CO)_2(Tm)] \mbox{ (1c)}.$

This journal is © The Royal Society of Chemistry 2021

SUPPORTING INFORMATION

Dalton Transactions

Figure S20b. Electronic spectrum (CH_2CI_2) of $[W{\equiv}CC(C_6H_4)_2CBr}(CO)_2(Tm)]$ (1c).

SUPPORTING INFORMATION

This journal is © The Royal Society of Chemistry 2021

Dalton Trans., 2021, **00**, 1-3 |

25

Please do not adjust margins

SUPPORTING INFORMATION

Dalton Transactions

SUPPORTING INFORMATION

Dalton Transactions

This journal is © The Royal Society of Chemistry 2021

Dalton Trans., 2021, 00, 1-3

Please do not adjust margins

SUPPORTING INFORMATION

Dalton Transactions

Dalton Transactions

Figure S25a. Electronic spectrum (CH₂Cl₂) of [W{=CC(C₆H₄)₂CC=CC₆H₄CH₃-4)(CO)₂(Tp*)] (2).

This journal is © The Royal Society of Chemistry 2021

Dalton Transactions

SUPPORTING INFORMATION

 $\label{eq:Figure S25b. Electronic spectrum (CH_2Cl_2) of [W{=}CC(C_6H_4)_2CC{=}CC_6H_4CH_3{-}4)(CO)_2(Tp^*)] \ (2).$

Dalton Transactions

SUPPORTING INFORMATION

Figure S26. Infrared spectrum (CH_2Cl_2, cm^{-1}) of $[W{\equiv}CC(C_6H_4)_2CC{\equiv}CC_6H_4CH_3-4)(CO)_2(Tp^*)]$ (2).

This journal is © The Royal Society of Chemistry 2021

Dalton Trans., 2021, 00, 1-3 |

31

Please do not adjust margins

SUPPORTING INFORMATION

Dalton Transactions

SUPPORTING INFORMATION

Dalton Transactions

SUPPORTING INFORMATION

Dalton Transactions

SUPPORTING INFORMATION

Figure S30. Cyclic Voltammogram (CH₂Cl₂/[NBu₄][PF₆] 0.1 M) at 25 °C at 100 mV s⁻¹ of [W₂Pd{µ-CC(C₆H₄)₂CBr}₂(CO)₄(Tp)₂] (3a).

This journal is © The Royal Society of Chemistry 2021

Dalton Trans., 2021, 00, 1-3 |

SUPPORTING INFORMATION

Dalton Transactions

Figure S31. Infrared spectrum (CH₂Cl₂, cm⁻¹) of $[W_2Pd{\mu-CC(C_6H_4)_2CBr}_2(CO)_4(Tp)_2]$ (3a).
SUPPORTING INFORMATION

 $\label{eq:Figure S32a} \textbf{Figure S32a}. \qquad Electronic spectrum (CH_2Cl_2) \ of \ [W_2Pd\{\mu-CC(C_6H_4)_2CBr\}_2(CO)_4(Tp)_2] \ \textbf{(3a)}.$

This journal is © The Royal Society of Chemistry 2021

Dalton Transactions

SUPPORTING INFORMATION

 $[\]label{eq:Figure S32a} \textbf{Electronic spectrum (CH_2Cl_2) of } [W_2Pd\{\mu-CC(C_6H_4)_2CBr\}_2(CO)_4(Tp)_2] \textbf{ (3a)}.$

SUPPORTING INFORMATION

Figure S33. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ) of [W₂Pd{ μ -CC(C₆H₄)₂CBr}₂(CO)₄(Tm)₂] (3b)

This journal is © The Royal Society of Chemistry 2021

SUPPORTING INFORMATION

Dalton Transactions

Figure S34. ¹H NMR (700 MHz, CDCl₃, -40 °C, δ) [W₂Pd{ μ -CC(C₆H₄)₂CBr}₂(CO)₄(Tm)₂] (3b).

Dalton Transactions

SUPPORTING INFORMATION

This journal is © The Royal Society of Chemistry 2021

Dalton Trans., 2021, 00, 1-3 |

41

SUPPORTING INFORMATION

Dalton Transactions

Dalton Transactions

SUPPORTING INFORMATION

 $\label{eq:Figure S37. Electronic spectrum (CH_2Cl_2) of [W_2Pd\{\mu-CC(C_6H_4)_2CBr\}_2(CO)_4(Tm)_2] \mbox{ (3b)}.$

This journal is © The Royal Society of Chemistry 2021

Dalton Transactions

SUPPORTING INFORMATION

 $\label{eq:Figure S37. Electronic spectrum (CH_2Cl_2) of [W_2Pd\{\mu-CC(C_6H_4)_2CBr\}_2(CO)_4(Tm)_2] \mbox{ (3b)}.$

Dalton Transactions

SUPPORTING INFORMATION

 $\label{eq:Figure S38. Infrared spectrum (CH_2Cl_2, cm^{-1}) \ of \ [W_2Pd\{\mu-CC(C_6H_4)_2CBr\}_2(CO)_4(Tm)_2] \ \textbf{(3b)}.$

This journal is © The Royal Society of Chemistry 2021

Dalton Trans., 2021, 00, 1-3 |

45

SUPPORTING INFORMATION

Dalton Transactions

SUPPORTING INFORMATION

Dalton Transactions

This journal is © The Royal Society of Chemistry 2021

SUPPORTING INFORMATION

Dalton Transactions

Dalton Transactions

SUPPORTING INFORMATION

This journal is © The Royal Society of Chemistry 2021

Dalton Trans., 2021, 00, 1-3 |

49

SUPPORTING INFORMATION

Dalton Transactions

Dalton Transactions

SUPPORTING INFORMATION

Figure S44. Electronic spectrum (CH₂Cl₂) of $[W_2Pt{\mu-CC(C_6H_4)_2CBr}_2(CO)_4(Tp)_2]$ (4a).

This journal is © The Royal Society of Chemistry 2021

Dalton Transactions

SUPPORTING INFORMATION

 $\label{eq:Figure S44.} Electronic spectrum (CH_2Cl_2) \ of \ [W_2Pt\{\mu-CC(C_6H_4)_2CBr\}_2(CO)_4(Tp)_2] \ \textbf{(4a)}.$

SUPPORTING INFORMATION

Dalton Transactions

 $\label{eq:Figure S45.} \qquad \mbox{Infrared spectrum (CH_2Cl_2, \ cm^{-1}) of $[W_2Pt\{\mu-CC(C_6H_4)_2CBr\}_2(CO)_4(Tp)_2]$ (4a)}.$

This journal is © The Royal Society of Chemistry 2021

Dalton Trans., 2021, 00, 1-3 |

53

SUPPORTING INFORMATION

Dalton Transactions

Please do not adjust margins

SUPPORTING INFORMATION

Figure S47. Infrared spectrum (CH₂Cl₂, cm⁻¹) of $[W_2Pt{\mu-CC(C_6H_4)_2CBr}_2(CO)_4(Tm)_2]$ (4b).

This journal is © The Royal Society of Chemistry 2021

Dalton Trans., 2021, 00, 1-3 |

SUPPORTING INFORMATION

Dalton Transactions

Figure S48a. Electronic spectrum (CH_2CI_2) of $[W_2Pt{\mu-CC(C_6H_4)_2CBr}_2(CO)_4(Tm)_2]$ (4b).

SUPPORTING INFORMATION

Dalton Transactions

 $\label{eq:Figure S48b.} Electronic spectrum (CH_2Cl_2) \ of \ [W_2Pt\{\mu-CC(C_6H_4)_2CBr\}_2(CO)_4(Tm)_2] \ \textbf{(4b)}.$

This journal is © The Royal Society of Chemistry 2021

SUPPORTING INFORMATION

Dalton Transactions

Dalton Transactions

SUPPORTING INFORMATION

This journal is © The Royal Society of Chemistry 2021

59

SUPPORTING INFORMATION

Dalton Transactions

Dalton Transactions

SUPPORTING INFORMATION

Dalton Trans., 2021, 00, 1-3 |

Please do not adjust margins

SUPPORTING INFORMATION

Dalton Transactions

Dalton Transactions

SUPPORTING INFORMATION

Figure S54a. Electronic spectrum (CH_2Cl_2) of $[(Tp)(CO)_2W{\equiv}CC(C_6H_4)_2CC{\equiv}W(CO)_2(Tp^*)]$ (5b).

This journal is © The Royal Society of Chemistry 2021

63

.

SUPPORTING INFORMATION

Dalton Transactions

Figure S55. ¹H NMR (700 MHz, CDCl₃, -20 °C, δ) of [(Tm)(CO)₂W{=CC(C₆H₄)₂CC=}W(CO)₂(Tp^{*})] (5c).

This journal is © The Royal Society of Chemistry 2021

This journal is © The Royal Society of Chemistry 2021

Please do not adjust margins

Dalton Transactions

SUPPORTING INFORMATION

Figure S59a. Electronic spectrum (CH_2Cl_2) of $[(Tm)(CO)_2W{\equiv}CC(C_6H_4)_2CC{\equiv}W(CO)_2(Tp^*)]$ (5c).

This journal is © The Royal Society of Chemistry 2021

Dalton Transactions

SUPPORTING INFORMATION

Dalton Transactions

SUPPORTING INFORMATION

This journal is © The Royal Society of Chemistry 2021

71

SUPPORTING INFORMATION

Dalton Transactions

Dalton Transactions

SUPPORTING INFORMATION

SUPPORTING INFORMATION

Dalton Transactions

Figure S63a. Electronic spectrum (CH₂Cl₂, cm⁻¹) of [(Tp*)(CO)₂W{=CC(C₆H₄)₂CC=}Mo(CO)₂(Tp*)] (6a). Poor data quality due to extremely low solubility.

SUPPORTING INFORMATION

Dalton Transactions

Figure S63b. Electronic spectrum (CH₂Cl₂, cm⁻¹) of $[(Tp^*)(CO)_2W{\equiv CC(C_6H_4)_2CC\equiv}Mo(CO)_2(Tp^*)]$ (6a).

This journal is © The Royal Society of Chemistry 2021

SUPPORTING INFORMATION

Dalton Transactions

 $\label{eq:Figure S64.} \mbox{Infrared spectrum (CH_2Cl_2, cm^{-1}) of } [(Tp^*)(CO)_2W\{ \equiv CC(C_6H_4)_2CC \equiv \} Mo(CO)_2(Tp^*)] \mbox{(6a)}.$

Figure S65. ¹H NMR (700 MHz, CDCl₃, 25 °C, δ) of [(Tp)(CO)₂W{=CC(C₆H₄)₂CC=}Mo(CO)₂(Tp*)] (6b).

This journal is © The Royal Society of Chemistry 2021

Dalton Trans., 2021, **00**, 1-3 |

SUPPORTING INFORMATION

Dalton Transactions

SUPPORTING INFORMATION

Dalton Transactions

 $\label{eq:Figure S67. 13C{1}} \textbf{Figure S67. 13C{1}} \ \text{NMR} \ (176 \ \text{MHz}, \ \text{CDCl}_3, \ \text{-40 }^\circ\text{C}, \ \delta) \ of \ [(\text{Tp})(\text{CO})_2 W \{ \equiv \text{CC}(\text{C}_6\text{H}_4)_2 \text{CC} \equiv \} Mo(\text{CO})_2(\text{Tp}^*)] \ \textbf{(6b)}.$

This journal is © The Royal Society of Chemistry 2021

Dalton Trans., 2021, **00**, 1-3 |

79

Please do not adjust margins

Please do not adjust margins

SUPPORTING INFORMATION

Dalton Transactions

 $\label{eq:Figure S68. Cyclic Voltammogram (CH_2Cl_2/[NBu_4][PF_6] \ 0.1 \ M) \ at \ 25 \ ^{\circ}C \ at \ 100 \ mV \ s^{-1} \ of \ [(Tp)(CO)_2W \{ \equiv CC(C_6H_4)_2CC \equiv \} Mo(CO)_2(Tp^*)] \ (6b).$

Dalton Transactions

SUPPORTING INFORMATION

Figure S69. Infrared spectrum (CH_2CI_2, cm^{-1}) of $[(Tp)(CO)_2W{\equiv CC(C_6H_4)_2CC \equiv}Mo(CO)_2(Tp^*)]$ (6b).

This journal is © The Royal Society of Chemistry 2021

SUPPORTING INFORMATION

Dalton Transactions

Figure S70a. Electronic spectrum (CH₂Cl₂, cm⁻¹) of $[(Tp)(CO)_2W{\equiv CC(C_6H_4)_2CC \equiv}Mo(CO)_2(Tp^*)]$ (6b).

SUPPORTING INFORMATION

Dalton Transactions

Figure S70b. Electronic spectrum (CH₂Cl₂, cm⁻¹) of $[(Tp)(CO)_2W{\equiv CC(C_6H_4)_2CC\equiv}Mo(CO)_2(Tp^*)]$ (6b).

This journal is © The Royal Society of Chemistry 2021

SUPPORTING INFORMATION

Dalton Transactions

Dalton Transactions

SUPPORTING INFORMATION

This journal is © The Royal Society of Chemistry 2021

Dalton Trans., 2021, 00, 1-3 |

85

Please do not adjust margins

SUPPORTING INFORMATION

Dalton Transactions

Dalton Transactions

SUPPORTING INFORMATION

Figure \$74. Cyclic Voltammogram (CH₂Cl₂/[NBu₄][PF₆] 0.1 M) at 25 °C at 100 mV s⁻¹ of [(Tm)(CO)₂W{\exc{2}C(C₆H₄)₂CC\exc{3}Mo(CO)₂(Tp*)] (6c).

This journal is © The Royal Society of Chemistry 2021

Dalton Trans., 2021, 00, 1-3 |

SUPPORTING INFORMATION

Dalton Transactions

 $\label{eq:Figure S75.} Infrared spectrum (CH_2Cl_2, cm^{-1}) of [(Tm)(CO)_2W\{ \equiv CC(C_6H_4)_2CC \equiv \} Mo(CO)_2(Tp^*)] \ (\textbf{6c}).$

SUPPORTING INFORMATION

Dalton Transactions

This journal is © The Royal Society of Chemistry 2021