Supporting Information

A POM-based copper-coordination polymer crystal material for phenolic

compound degradation by immobilizing horseradish peroxidase

Ying Lu, Tong Zhang, Yue-Xian Zhang, Xiao-Jing Sang, Fang Su*, Zai-Ming Zhu*, Lan-Cui Zhang*

- 1. Selected bond lengths and angles of compounds 1 and 2
- 2. The standard curves and H_2O_2 detection
- 3. Synthesis and crystal structure figures
- 4. Characterizations
- 5. Enzyme immobilization and characterization
- 6. Degradation of phenolic compounds by HRP/1

Bond	Length (A)	Bond	Length (A)	Bond	Length (A)
Cu1-O21	1.878(12)	Cu2–N3	2.010(14)	P2023	1.534(14)
Cu1–O24	1.970(12)	Cu2–O22#2	2.250(13)	P2O22	1.549(12)
Cu1–N2	1.996(15)	Cu3–O23	1.868(13)	P2-C31	1.807(18)
Cu1–N1	2.019(17)	Cu3–O26	1.899(12)	P3O26	1.509(13)
Cu1-O24#1	2.401(12)	Cu3–N6	1.989(16)	P3–O24	1.518(13)
Cu2–O25	1.931(11)	Cu3–N5	1.998(15)	P3O25	1.519(12)
Cu2–N4	1.978(17)	P2O21	1.521(13)	P3-C41	1.827(17)
Cu2–O22	1.997(12)				
Bond	Angle (°)	Bond	Angle (°)	Bond	Angle (°)
O24-Cu1-N1	173.5(6)	O25–Cu2–O22	92.4(5)	O23-P2-C31	105.0(8)
N2–Cu1–N1	80.6(7)	O23–Cu3–N5	165.7(7)	O21-P2-C31	105.9(8)
O24-Cu1-O24#1	83.0(5)	N6–Cu3–N5	81.7(7)	O24–P3–O25	114.1(7)
O22-Cu2-N3	171.6(6)	O26-Cu3-N5	90.5(6)	O26–P3–C41	105.2(7)
N4Cu2N3	79.6(6)	O21–P2–O23	114.2(8)	O24–P3–C41	106.7(8)

1. Selected bond lengths and angles of compounds 1 and 2

Table S1 Selected bond lengths (Å) and angles (°) for compound 1

Symmetry transformations used to generate equivalent atom

Table S2 Hydrogen bonds (Å, °) for compound 1

D–H···A	d(D-H)	d(H····A)	d(D···A)	<(DHA) (°)		
O1W-H1WAO4#1	0.851(10)	2.5(2)	2.98(3)	119(22)		
O1W-H1WBO18	0.851(10)	2.251(10)	3.01(3)	149(5)		
O2W-H2WAO2W#2	0.850(10)	2.150(10)	2.83(8)	137(11)		
O2W-H2WBO10	0.850(10)	2.53(15)	3.30(5)	152(28)		

Symmetry transformations used to generate equivalent atoms: #1 -x+1, -y, -z; #2 -x, -y+1, -z

Table S3 Selected bond lengths (Å) and angles (°) for compound 2

Bond	Length (Å)	Bond	Length (Å)	Bond	Length (Å)
W1O6	1.730(6)	W2O1	1.961(6)	Cu1011	1.966(7)
W1–O3	1.826(7)	W2O7#1	2.153(6)	Cu1–O1	1.972(6)
W107	1.833(7)	W2–O8	2.243(6)	Cu1–N1	2.015(9)
W1O8	1.969(6)	W3O10	1.742(7)	Cu1–N2	2.031(8)
W1O1	2.102(6)	W3–O4	1.807(7)	Cu1–O1w	2.285(8)
W1O8#1	2.328(6)	W3011	1.812(7)	Cu2O4#1	1.899(7)
W2–O9	1.738(7)	W3–O5#1	2.086(7)	Cu2–O2	1.907(7)
W2O2	1.810(6)	W3–O3	2.104(6)	Cu2–N4	1.978(9)
W2–O5	1.879(7)	W3–O8#1	2.227(6)	Cu2–N3	1.993(9)
Bond	Angle (°)	Bond	Angle (°)	Bond	Angle (°)
O6-W1-O8#1	176.7(3)	O2-W2-O1	91.7(3)	O1–Cu1–N1	172.7(3)
O7-W1-O1	157.9(3)	O2–W2–O8	93.8(3)	N1–Cu1–N2	80.4(3)
O3-W1-O7	98.5(3)	O4–W3–O3	156.9(3)	O11–Cu1–O1	91.6(3)
O7–W1–O8	92.3(3)	O10-W3-O8#1	164.1(3)	O2–Cu2–N4	165.5(3)
O2-W2-O7#1	166.4(3)	O4-W3-O5#1	89.8(3)	N4-Cu2-N3	81.1(4)
O9–W2–O8	163.1(3)	O11-W3-O3	86.4(3)	O2–Cu2–N3	92.9(3)

Symmetry transformations used to generate equivalent atoms: #1 -x+2, -y+1, -z+1

2. The standard curves and H₂O₂ detection

(1) The standard curve of HRP

Fig. S1 The standard curve of HRP concentration versus absorbance (403 nm)

(2) The experiment of H₂O₂ detection

The experiment of H_2O_2 detection was performed as follows. 40 µL of immobilized enzyme dispersion (pH 4.5, 5 mg mL⁻¹) was mixed with H_2O_2 solution (460 µL, pH 4.5, 0.04–0.28 mmol L⁻¹) and 500 µL of PBS (pH 4.5) containing 4 mmol L⁻¹ of 4-AAP and 1 mmol L⁻¹ of phenol. The resulting mixture was reacted for 2 min and centrifuged for 3 min at room temperature, and then the UV-vis absorption spectrum of supernatant was recorded at 510 nm.

Fig. S2 The linear calibration plot for H₂O₂ detection using HRP/1 (HRP loading: 268 mg g⁻¹) as catalyst. $\Delta A = A$ (the immobilized HRP, 510 nm) – A (blank, 510 nm). The reaction time is 5 min

As shown in Fig. S2 (ESI[†]), the absorbance at 510 nm is increased with increasing the H_2O_2 concentration from 0.04 to 0.28 mmol L⁻¹. A linear relationship is observed between the absorbance and H_2O_2 concentration ranging from 0.04 to 0.20 mmol L⁻¹ catalyzed by HRP/1 with a detection limit of 3.06 × 10⁻³ mol L⁻¹. These results confirm that the activity of HRP is retained after immobilization on compound 1, and HRP/1 is a kind of potential material for H_2O_2 detection.

(3) The standard curves of different phenolic compound

Fig. S3 The standard curves of (a) phenol, (b) 4-CP, (c) 2,4-DCP concentration versus absorbance (506 nm)

3. Synthesis and crystal structure figures

Scheme S1 Schematic representation of the synthetic pathway and conditions of compounds 1 and 2

Fig. S4 (a, b) ORTEP view of the asymmetric unit of compounds 1 and 2 with atom labeling (30% probability displacement ellipsoids; hydrogen atoms and water molecules have been omitted for clarity)

Fig. S5 (a, b) The arrangement of [PCuW₁₁O₃₉]⁵⁻ polyoxoanions and [((Cu(bipy))₂(μ-PhPO₃)₂Cu(bipy))₂]⁴⁺ cations, respectively; (c) the packing view of an infinite 3D network of compound 1

Fig. S6 3D packing diagram of compound 2

4. Characterizations

Fig. S7 (a, b) FTIR spectra of compounds 1 and 2

Fig. S8 (a, b) The simulated and experimental PXRD patterns of compounds 1 and 2

Fig. S9 (a, b) TG-DTA curves of compounds 1 and 2

Fig. S10 (a-d) UV-vis diffuse reflectance spectra of bipy, PhPO₃H₂, compounds 1 and 2, respectively

5. Enzyme immobilization and characterization

Fig. S11 FTIR spectra of compound 1 before (crystalline sample) and after (solid powders) soaking in PBS at pH 3.5–8.5 for 24 h

Fig. S12 (a) Surface zeta potential of free HRP and compound 1 (solid powders) at different pH. (b) The particle size distribution curve of grinded compound 1 powders

Before zeta potential measurement, the grinded compound 1 powder was dispersed in PBS, and then sonicated 15 min to form a uniform suspension with concentration of 0.5 mg mL⁻¹. As for free HRP, 1.6 mg mL⁻¹ of enzyme solution was applied to determine the zeta potential.

Table S4 The comparison of enzyme loading capacity for different support materials						
Entry	Support material	Enzyme loading amount	References			
		$(mg g^{-1})$				
1	${[Cu(H_2biim)_2][{Cu(H_2biim)_2(\mu-H_2O)}_2Cu(H_2biim)]}$	157.5–158.7	26			
	$(H_2O)_2]H[({Cu(H_2biim)(H_2O)_2}_{0.5})_2((\mu-C_3HN_2Cl_2)$					
	$\{Cu(H_2biim)\}_2\}\{Z(H_2O)P_5W_{30}O_{110}\}]\cdot xH_2O\}_n$					
2	$[(TM(H_2biim)_2)_2(C_6H_5PO_3)_2Mo_5O_{15}]$ ·H ₂ O	95.5–101.7	27			
3	$[Cu_2Mo_6O_{20}(C_6H_6N_4)_2(H_2O)_2]_n$	300.1	28			
4	$\{[(Zn(H_2biim)_2)_3(P_2W_{18}O_{62})] \cdot 6H_2O\}_n$	90.1	29			
5	graphene oxide	100	13			
6	layered double hydroxides (LDHs)	0.32	14			
7	tyrosine-bridged periodic mesoporous organosilica	2.2	41			
8	phosphorus-modified MCM-41	154	42			
9	$ \{((Cu(bipy))_2(\mu-PhPO_3)_2Cu(bipy))_2H \\ (PCuW_{11}O_{39})\cdot 3H_2O\}_n $	268	This work			

Fig. **S13** SEM images of (a, b) grinded compound **1** powders and (c, d) HRP/**1**. b and d are the magnified picture of square area in a and c, respectively

6. Degradation of phenolic compounds by HRP/1

(1) Determination of phenolic compound concentration

The concentration of residual phenolic compound can be determined as follows: 0.20 mL of the degraded solution was diluted to 1.80 mL with PBS (pH 3.5–8.5), and then mixed with 0.30 mL of 16.68 mmol L^{-1} K₃Fe(CN)₆ in 0.25 mol L^{-1} NaHCO₃, as well as 0.30 mL of 4.16 mmol L^{-1} 4-AAP in 0.25 mol L^{-1} NaHCO₃. The mixed solution was reacted for 5 min at room temperature and monitored the absorbance (506 nm) by UV-vis spectrophotometer (Fig. S3, ESI[†]).

(2) The degradative activity of HRP/1 towards different phenolic compounds

Entry	Enzyme	Support material	Pollutants/Concentration Reaction time		Removal efficiency	References
			$(mg L^{-1})$		(%)	
			Phenol/400		90.5 (TOC: 73.6)	
1	HRP	${((Cu(bipy))_2(\mu-PhPO_3)_2Cu(bipy))_2H}$ (PCuW ₁₁ O ₃₉)·3H ₂ O} _n	2,4-DCP/400	20 min	96.9 (TOC: 78.3)	This work ^a
			4-CP/400	30 min	97.0 (TOC: 75.2)	
2	HRP	Polyacrylonitrile-based beads	2,4-DCP/282	12 h	90.0	45
			Phenol/94		43.1	
3	HRP	Carbon nanospheres	2,4-DCP/94	90 min	95.0	46
					25	
4	HRP	layered double hydroxides	Phenol/25	7 h	35 ^b	14
			Phenol/10		89.5	
5	Laccase	Heterophase TiO ₂ microspheres	2,4-DCP/10	3.5 h	85.9	47°
6	RSVNP-CLEAs ^d	_	Phenol/100	1 h	92 (TOC: 78)	2

^aReaction conditions: 5.0 mg HRP/1 (268 mg g^{-1}), H₂O₂/phenol molar ratio of 2.3: 1, pH 7.5, reaction time of 30 min and temperature of 25 °C ^{b, c}Photo-enzyme integrated catalysis process

^dRSVNP: peroxidase isolated from *Raphanus sativus* var. *niger*; RSVNP-CLEAs: RSVNP was immobilized as a cross-linked enzyme aggregate (CLEAs)

(3) The effect of H_2O_2 on degradation of phenol in absence of catalyst

Fig. S14 Influence of H_2O_2 initial concentration on degradation of phenol (10 mL, 400 mg L⁻¹) without catalyst at pH 7.5. The amounts of fresh 30% H_2O_2 are 10, 50, 100, 200, 300, 400 and 500 µL, that is, the final H_2O_2 concentrations in the reaction solution are about 9.8, 48.7, 97.0, 192.0, 285.3, 376.7 and 466.4 mmol L⁻¹ ($n(H_2O_2/phenol) = 2.3: 1, 11.5: 1, 23: 1, 46: 1, 69: 1, 92: 1, 115: 1$), respectively. Reaction time, 30 min