<Electronic Supplementary Information>

Formation Procedure of Trimetallic Coordination Cages for Nitrate Encapsulation:

Transformation of Kinetic into Thermodynamic Products

Sangwoo Lim, Heehun Moon, Dongwon Kim, and Ok-Sang Jung*

Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea Fax: (+82) 51-5163522;

Tel: (+82) 51-5103240; E-mail: oksjung@pusan.ac.kr

Fig. S1 ¹H NMR Spectra for L (a), [(NO₃)@Pd₃L₆](NO₃)₅·2Me₂SO (b), [(NO₃)@Pd₃L₆](ClO₄)₅·5Me₂SO (c), [PdL₂](BF₄)₂ (d), [PdL₂](ClO₄)₂ (e), [PdL₂](PF₆)₂ (f), and [PdL₂](CF₃SO₃)₂ (g) in Me₂SO-d₆.

Fig. S2 IR spectra of L (a), $[PdL_2](BF_4)_2$ (b), $[PdL_2](ClO_4)_2$ (c), $[PdL_2](PF_6)_2$ (d), and $[PdL_2](CF_3SO_3)_2$ (e).

Fig. S3 IR spectra of L (a), $[(NO_3)@Pd_3L_6](NO_3)_5 \cdot 2Me_2SO$ (b), and $[(NO_3)@Pd_3L_6](X)_5$ *via* anion exchange of $[(NO_3)@Pd_3L_6](NO_3)_5 \cdot 2Me_2SO$ with BF_4^- (c), ClO_4^- (d), PF_6^- (e), and $CF_3SO_3^-$ (f).

Fig. S4 Crystal structures of $[(NO_3)@Pd_3L_6](NO_3)_5 \cdot 2Me_2SO$ with top view (a) and side view (b).

Fig. S5 Crystal structures of $[(NO_3)@Pd_3L_6](NO_3)_5 \cdot 2Me_2SO$ designating the disordered ligands (a): four red ligands. Its separated *P*-helical cage (b), *M*-helical cage (c).

Fig. S6 ¹H NMR spectra of L (a), reaction of $Pd(NO_3)_2$ with L at 90 °C for 0 min (b), 10 min min (d), 1 h (e), 2 h (f), 4 h (g), (c), 30 and 12 h (h).

Fig. S7 ESI-TOF-MS data of $[(NO_3)@Pd_3L_6](NO_3)_5 \cdot 2Me_2SO. m/z$ range 50-4000 (a), m/z range 500-1000 (b), and m/z range 1000-1400 (c). m/z for $[Pd_3L_4(NO_3)_4]^{2+} = 912.1595$, $[Pd_3L_5(NO_3)_4]^+ = 1070.2419$

Fig. S8 ESI-TOF-MS data of $[PdL_2](BF_4)_2$. m/z range 50-4000 (a), and m/z range 50-800 (b). m/z for $[PdL_2]^{2+} = 367.1153$, $[PdL_2]F^+ = 753.2292$

Fig. S9 ESI-TOF-MS data of $[PdL_2](ClO_4)_2$. m/z range 50-4000 (a), m/z range 50-800 (b), and m/z range 750-1400 (c). m/z for $[PdL_2]^{2+} = 367.1160$, $[PdL_2](ClO_4)^+ = 835.1761$

Fig. S10 ESI-TOF-MS data of $[PdL_2](PF_6)_2$. m/z range 50-4000 (a), and m/z range 50-800 (b). m/z for $[PdL_2]^{2+} = 367.1154$, $[PdL_2]F^+ = 753.2265$

Fig. S11 ESI-TOF-MS data of $[PdL_2](CF_3SO_3)_2$. m/z range 50-4000 (a), m/z range 50-800 (b), and m/z range 750-1400 (c). m/z for $[PdL_2]^{2+} = 367.1176$, $[PdL_2](ClO_4)^+ = 883.1920$

Fig. S12 IR spectra of L (a), $[PdL_2](ClO_4)_2$ (b), and $[(NO_3)@Pd_3L_6](NO_3)_5$ *via* anion exchange of $[PdL_2](ClO_4)_2$ with NO_3^- (c).