Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Group 11 metal complexes of a dinucleating triazole appended bisphosphine, 1,4-bis(5-(diisopropylphosphaneyl)-1-phenyl-1H-1,2,3triazol-4-yl)benzene

Basvaraj S. Kote, Harish S. Kunchur, Latchupatula Radhakrishna and Maravanji S. Balakrishna*

Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India

NMR spectra of compounds 1a-10	S2-S30
HRMS and FT-IR spectra of compounds 2-10	S3-S32
Crystallographic information for compounds 2-5, and 7-10	S33-S34
Computational Details	S35-S35

*Corresponding author: M. S. Balakrishna, E-mail: <u>krishna@chem.iitb.ac.in</u> or <u>msb_krishna@iitb.ac.in</u>

Fig. S2 ${}^{13}C{}^{1}H$ NMR spectrum of 1a in CDCl₃ (400 MHz).

Fig. S3 HRMS spectrum of 1a.

Fig. S4¹H NMR spectrum of **1b** in CDCl₃ (400 MHz).

Fig. S6 ³¹P{¹H} NMR spectrum of **2** in CDCl₃ (162 MHz).

Fig. S8¹³C $\{^{1}H\}$ NMR spectrum of 2 in CDCl₃ (101 MHz).

Fig. S9 ${}^{13}C{}^{1}H$ DEPT-135 spectrum of 2 in CDCl₃ (101 MHz).

Fig. S10 HRMS spectrum of 2.

Fig. S11 FT–IR spectrum of ligand 2.

Fig. S13¹H NMR spectrum of 3 in CDCl₃ (400 MHz).

Fig. S14 ${}^{13}C{}^{1}H$ NMR spectrum of 3 in CDCl₃ (101 MHz).

Fig. S15¹³C{¹H} DEPT-135 spectrum of **3** in CDCl₃(101 MHz).

Fig. S16 HRMS spectrum of 3.

Fig. S17 FT–IR spectrum of 3.

Fig. S19¹H NMR spectrum of 4 in CDCl₃ (400 MHz).

Fig. S20 $^{13}C{^{1}H}$ NMR spectrum of 4 in CDCl₃ (101 MHz).

Fig. S21 $^{13}C{^{1}H}$ DEPT-135 spectrum of 5 in CDCl₃ (101 MHz).

Fig. S22 HRMS spectrum of 4.

Fig. S23 FT–IR spectrum of 4.

Fig. S24 ${}^{31}P{}^{1}H$ NMR spectrum of 5 in CDCl₃ (162 MHz).

7.95 7.92 7.68 7.67 7.66 7.64 7.64 7.62 7.60 7.52 7.51 7.51

7.5 9.0 8.5 8.0 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 **Fig.S25**¹H NMR spectrum of **5** in CDCl₃ (400 MHz).

Fig. S27¹³C{¹H} DEPT-135 spectrum of **5** in CDCl₃ (101 MHz).

Fig. S28 HRMS spectrum of 5.

Fig. S29 FT–IR spectrum of 5.

Fig. S33 HRMS spectrum of 6.

Fig. S34 FT–IR spectrum 6.

Fig. S36 ¹H NMR spectrum of 7 in $CDCl_3$ (400 MHz).

Fig. S37 $^{13}C{^{1}H}$ NMR spectrum of 7 in CDCl₃ (101 MHz).

Fig. S38 HRMS spectrum of 7.

Fig. S39 HRMS spectrum of 7.

Fig. S40 FT–IR spectrum of 7.

Fig. S42¹H NMR spectrum of 8 in CDCl₃ (400 MHz).

Fig. S43 ${}^{13}C{}^{1}H$ NMR spectrum of 8 in CDCl₃ (101 MHz).

Fig. S44 HRMS spectrum of 8.

Fig. S45 FT–IR spectrum 8.

Fig. S46 ${}^{31}P{}^{1}H$ NMR spectrum of 9 in CDCl₃ (162 MHz).

9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 Fig. S47 ¹H NMR spectrum of 9 in CDCl₃ (400 MHz).

Fig. S48 ${}^{13}C{}^{1}H$ NMR spectrum of 9 in CDCl₃ (101 MHz).

Fig. S49 HRMS spectrum of 9.

Fig. S50 FT–IR spectrum of 9.

Fig. S52 ¹H NMR spectrum of 10 in CDCl₃ (400 MHz).

Fig. S53 $^{13}C{^{1}H}$ NMR spectrum of 10 in CDCl₃ (101 MHz).

Fig. S54 HRMS spectrum of 10.

Fig. S55 FT–IR spectrum of 10.

	2	$3 \cdot (CH_2Cl_2)$	4	5.1.334(CH ₂ Cl ₂)
Formula	$C_{34}H_{42}N_6P_2$	$C_{35}H_{44}Cl_4Cu_2N_6P_2$	$C_{34}H_{42}Br_2Cu_2N_6P$	$C_{35.33}H_{44.67}Cl_{2.86}Cu_2I_{1.81}N_6P_2$
			2	
Formula Weight	596.67	879.58	883.57	1073.66
Crystal System	triclinic	monoclinic	monoclinic	orthorhombic
				DI
space group	P-1	P2 ₁ /n	$P2_1/c$	Pbca
<i>a</i> , A	9.4624(9)	12.1164(3)	10.3774(7)	19.0847(3)
b, Å	9.4943(9)	12.6359(3)	13.1298(5)	16.9234(2)
c, Å	10.6255(9)	26.3943(7)	27.1445(13)	26.5829(4)
α , deg	79.746(7)	90	90	90
β, deg	73.045(8)	102.446(3)	100.700(6)	90
γ, deg	61.024(9)	90	90	90
$V, Å^3$	798.03(15)	3946.06(17)	3634.2(3)	8585.7(2)
Ζ	1	4	4	8
$\rho_{\text{calc,}}$ (g cm ⁻³)	1.242	1.481	1.615	1.513
μ (Mo K α), mm ⁻¹	0.170	1.464	3.491	2.532
F (000)	318.0	1808.0	1784.0	3856.0
crystal size, mm	$0.123 \times 0.08 \times 0.068$	0.250 imes 0.105 imes	0.19 imes 0.11 imes	$0.125\times0.118\times0.075$
		0.085	0.09	
$T(\mathbf{K})$	150	150	150	150
2θ range, deg	5.068 to 49.992	2.358 to 31.0145°	4.556 to 49.994	3.065 to 31.208
Total no. reflns	7245	29108	29523	223620
No.of indep	2789 [R _{int} = 0.0738]	6918 [R _{int} = 0.0963]	6393 [R _{int} =	13598 [$R_{int} = 0.0888$]
reflns			0.1138]	
S	1.052	1.054	1.101	1.063
R_1	0.0701	0.0390	0.0863	0.0474
wR_2	0.1835	0.0966	0.1842	0.1167

Table S1 Crystallographic information for compounds 2–5.

	7 ·3(CH ₂ Cl ₂)	$8 \cdot (C_2 H_4 C l_2)$	9 ·0.66(CHCl ₃), 2.34(CH ₂ Cl ₂)	10 ·(CH ₂ Cl ₂)
Empirical formula	$C_{71}H_{90}Ag_4Br_4Cl_6N_{12}P_4$	$C_{36}H_{46}Ag_2Cl_2I_2N_6P_2$	$C_{41}H_{53.34}Ag_2Cl_{6.66}N_6O_4P_2$	$C_{35}H_{44}Au_2Cl_4N_6P_2$
Formula weight	2199.24	1065.17	1208.056	1146.43
Crystal system	triclinic	orthorhombic	triclinic	monoclinic
Space group	P-1	Pbca	P-1	$P2_{1}/c$
a/Å	13.3674(4)	18.9149(5)	12.6903(3)	9.2017(2)
b/Å	17.7306(8)	17.4523(5)	13.7105(3)	32.7903(6)
c/Å	20.2898(6)	26.6732(7)	16.3337(4)	13.2599(3)
α/°	83.651(3)	90	67.733(2)	90
β/°	74.880(3)	90	85.412(2)	98.888(2)
$\gamma/^{\circ}$	70.200(3)	90	75.516(2)	90
Volume/Å ³	4366.7(3)	8805.0(4)	2546.05(11)	3952.82(15)
Ζ	2	8	2	4
$\rho_{\rm calc,} (\rm g \ \rm cm^{-3})$	1.673	1.758	1.576	1.926
μ (Mo K α), mm ⁻¹	3.016	2.518	1.226	7.800
F(000)	2182.0	4544	1220.05	2208.0
Size	$0.123 \times 0.023 \times 0.012$	$0.103 \times 0.078 \times 0.075$	$0.123 \times 0.053 \times 0.024$	$0.089 \times 0.067 \times 0.065$
<i>T</i> (K)	150	150	150	150
2θ range, deg	3.438 to 49.998	3.524 to 145.528	4.086 to 50	3.348 to 53.996
Reflections collected	168363	97689	142218	119124
Independent	15366 $[R_{int} = 0.1353]$	7751 [R _{int} = 0.0833]	8975 [R _{int} = 0.1213]	8615 [R _{int} = 0.0832]
reflections				
S	1.021	1.035	1.046	1.018
R_l^a	0.0778	0.0363	0.0458	0.0358
wR ₂	0.2249	0.0931	0.1223	0.0889

 Table S2. Crystallographic information for compounds 7–10.

System	Cu1–P1	Cu2–P2	C1–C2	Cu1–C2	Cu2–C1	Cu1–Cu2
Complex 3 (found)	2.1757	2.1835	1.391	2.950	2.746	2.7617
Complex 3 (calc.)	2.1761	2.1835	1.3896	2.9298	2.7661	2.7615
Complex 4 (found)	2.191	2.207	1.407	2.794	2.640	2.7036
Complex 4 (calc.)	2.1913	2.2065	1.4076	2.7987	2.6398	2.7035
Complex 5 (found)	2.2244	2.2245	1.402	2.856	2.852	2.8316
Complex 5 (calc.)	2.2246	2.2243	1.4029	2.8518	2.856	2.8315

Table S3. Important bond distances in the Cu(I) complexes (3–5) as obtained from the X-ray crystal structure and DFT optimization (wb97xd/Def2SVP). All distances in Å.

Table S4. Selected topological properties of complexes 3, 4, and 5.

Complex	ρ(r)	λ2	$\nabla^2 \rho(\mathbf{r})$	G(r)
3-BCP-1	0.0133	-0.0065	0.0322	0.0083
3-BCP-2	0.0175	-0.0100	0.0479	0.0121
4-BCP-1	0.0166	-0.0084	0.0444	0.0112
4-BCP-2	0.0220	-0.0139	0.06f	0.0167
5-BCP-1	0.0159	-0.0073	0.0382	0.0100
5-BCP-2	0.0159	-0.0078	0.0387	0.0101