Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Material

Fluorescent and Electrochemical Detection of Iodine Vapor in the Presence of High Humidity using Ln-based MOFs

Xiuting Dong,^{a, b} Qing He,^a Menglin Li,^{a, b} Xinpeng Wang,^{a, b} Yuxin Wang,^{a, b} Wen Zhang^{*, a, b}

^aSchool of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.

^bState Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science & Desalination Technology, Tianjin 300350, China.

*To whom correspondence should be addressed. zhang_wen@tju.edu.cn (W. Z.)

Table of Contents

Figure S1. Adsorption curves of Ln-BTCs and De-Ln-BTCs in saturated iodine vapor at 80 °C

- Figure S2. Elution ratios of adsorbed iodine via ethanol soaking
- Figure S3. Adsorption curves of Ln-BTCs in saturated iodine vapor with 18% RH at 80 °C
- Figure S4. PXRD patterns of I₂@Eu-BTC under 18% relative humidity, De-Eu-BTC, I₂@De-Eu-BTC and iodine-loaded samples after elution
- Figure S5. PXRD patterns of I₂@Tb-BTC under 18% relative humidity, De-Tb-BTC, I₂@De-Tb-BTC and iodine-loaded samples after elution
- Figure S6. Water adsorption curves of Ln-BTCs in 18% relative humidity at 80 °C
- Figure S7. Emission spectra of I₂@Dy-BTC
- Figure S8. Emission spectra of I₂@Er-BTC
- Figure S9. Emission spectra of I₂@Yb-BTC
- Figure S10. Solid-state UV-Vis spectrum of I2 and emission spectrum of Eu-BTC
- Figure S11. XPS spectra of I 3d in Iodine-loaded Eu-BTC after treating in vacuum for 12 h at 100 °C
- Figure S12. Impedance response plots of Eu-BTC upon iodine and/or water uptake with different weight percents
- Figure S13. The reuse performance of Eu-BTC using impedance response
- Figure S14. Adsorption curves of Eu-BTC monocrystal in saturated iodine vapor at 80°C
- Table S1 Iodine-loading-induced increase of the electric conductivity for MOFs

Figure S1. Adsorption curves of Ln-BTCs and De-Ln-BTCs in saturated iodine vapor at 80°C

Figure S2. Elution ratios of adsorbed iodine via ethanol soaking

Figure S3. Adsorption curves of Ln-BTCs in saturated iodine vapor with 18% relative humidity at 80°C

Figure S4. PXRD patterns of I₂@Eu-BTC under 18% relative humidity, De-Eu-BTC, I₂@De-Eu-BTC and iodine-loaded samples after elution.

Figure S5. PXRD patterns of I₂@Tb-BTC under 18% relative humidity, De-Tb-BTC, I₂@De-Tb-BTC and iodine-loaded samples after elution.

Figure S6. Water adsorption curves of Ln-BTCs in 18% relative humidity at 80 °C (The vial with 30 mg Ln-BTC was introduced into in a sealed bottle which contains 3 mL saturated calcium chloride aqueous solution. The bottle was placed in an 80 °C oven).

Figure S7. Emission spectra of I₂@Dy-BTC with an excitation wavelength of λ_{ex} =297 nm

Figure S8. Emission spectra of $I_2@$ Er-BTC with an excitation wavelength of λ_{ex} =297 nm

Figure S9. Emission spectra of I₂@Yb-BTC with an excitation wavelength of λ_{ex} =297 nm

Figure S10. Solid-state UV-Vis spectrum of I_2 and emission spectrum of Eu-BTC (The solid-state UV-Vis spectra of iodine was measured using a SHIMADZU UV-2600 UV-Vis-NIR spectrophotometer at room temperature. The excitation spectrum of Eu-BTC powder was measured using a Jobin Yvon Fluorolog3-21 coupled with a 400 nm longpass filter with a Xe 450W ozone-free continuous xenon arc lamp and a 2 nm slit width, monitored at 620 nm.)

Figure S11. XPS spectra of I 3d in Iodine-loaded Eu-BTC after treating in vacuum for 12 h at 100 °C (X-ray photoelectron spectroscopy (XPS), Thermo ESCALAB 250Xi, C 1s at 285 eV)

Figure S12. Impedance response plots of Eu-BTC upon iodine and/or water uptake with different weight percents

Figure S13. The reuse performance of Eu-BTC using impedance response

Figure S14. Adsorption curves of Eu-BTC monocrystal in saturated iodine vapor at 80 °C (A vial with 30 mg Ln-BTC monocrystal were introduced into in a sealed bottle which contains about 1.5 g solid iodine for iodine uptake. The bottle was placed in an oven and kept at 80 °C)

MOFs	Iodine capability wt%	conductivity for MOFs (S/cm)	conductivity for I ₂ - loaded MOFs (S/cm)	Times	Ref
Eu ₄ (BPT) ₄ (DMF) ₂ (H ₂ O) ₈	17.41	8.27×10-7	2.71×10 ⁻⁵	33	[1]
$\{(Na_2I_2CB[6]) \cdot 8H_2O \cdot 1.4I_2\})$	25		7.46×10 ⁻⁷		[2]
$[Co_{1.5}(BDC)_{1.5}(H_2BPZ)] \cdot DMF \cdot 4H_2O$	20.2	2.59×10-9	7.69×10 ⁻⁶	2.97×10 ³	[3]
[Tb(Cu ₄ I ₄)(ina) ₃ (DMF)]	22.6	5.72×10 ⁻¹¹	2.16×10-4	3.78×10 ⁶	[4]
ZIF-8	116			×10 ⁵	[5]
MFM-300(In)	15			×10 ⁶	[6]
MFM-300(V ^{III})	_	1.7×10 ⁻¹⁰	1.2×10-4	7.06×10 ⁵	[7]
[Ca ₂ (TBAPy)(OH ₂) ₂]·2DMF	25	<10-9	5.3×10 ⁻⁶	>10 ³	[8]
[DMA][In(TDC) ₂]	56	1.3×10 ⁻¹¹	2.8×10-8	2.15×10 ³	[9]
dhMOF	17	2×10-8	2.6×10-4	1.30×10 ⁴	[10]
Fe-MET-3	_	0.77×10-4	1×10-3	13	[11]
Cu[Ni(pdt) ₂	_	1×10-8	1.2×10-4	1.20×10 ⁴	[12]
$[Cu_6(pybz)_8(OH)_2] \cdot I_5 \cdot I_7$	85	8.04×10-9	8.11×10 ⁻⁷	1×10 ²	[13]
NiPc-CoTAA	_	8.16×10-3	0.52	64	[14]
$[(Me_2NH_2)_2][Cd_3(5-tbip)_4] \cdot 2DMF$	58	1.71×10-8	1.29×10-6	76	[15]
Eu-BTC (RH=0)	33.5	2.78×10 ⁻¹³	6.08×10 ⁻⁶	2.19×10 ⁷	This work
Eu-BTC (RH=18%)	26.1	4.10×10 ⁻¹¹	1.55×10-6	3.78×10 ⁴	This work
Tb-BTC (RH=0)	34.8	3.78×10 ⁻¹³	6.62×10 ⁻⁶	1.75×10 ⁷	This work
Tb-BTC (RH=18%)	27.2	4.57×10 ⁻¹¹	2.04×10-6	4.51×10 ⁴	This work

Table S1 Iodine-loading-induced increase of the electric conductivity for MOFs

The calculation of electrical conductivity of Ln-BTC and $I_2@$ Ln-BTC

The conductivity is calculated according to the following equations:

$$\sigma = \frac{L}{R \times A}$$

, where σ = conductivity (S/cm), R = resistance, A = cross sectional area of electrodes (cm²), and L = distance between electrodes (cm).

References

[1] Hao, Z.; Yang, G.; Song, X.; Zhu, M.; Meng, X.; Zhao, S.; Song, S.; Zhang, H., A europium(III) based metal–organic framework: bifunctional properties related to sensing and electronic conductivity. *Journal of Materials Chemistry A* **2014**, 2 (1), 237-244.

[2] Lin, J.-X.; Liang, J.; Feng, J.-F.; Karadeniz, B.; Lü, J.; Cao, R., Iodine uptake and enhanced electrical conductivity in a porous coordination polymer based on cucurbit[6]uril. *Inorganic Chemistry Frontiers* **2016**, 3 (11), 1393-1397.

[3] Li, G. P.; Zhang, K.; Zhao, H. Y.; Hou, L.; Wang, Y. Y., Increased Electric Conductivity upon I2 Uptake and Gas Sorption in a Pillar-Layered Metal-Organic Framework. *Chempluschem* **2017**, 82 (5), 716-720.

[4] Hu, Y.-Q.; Li, M.-Q.; Wang, Y.; Zhang, T.; Liao, P.-Q.; Zheng, Z.; Chen, X.-M.; Zheng, Y.-Z., Direct Observation of Confined $I^- \cdots I_2 \cdots I^-$ Interactions in a Metal–Organic Framework: Iodine Capture and Sensing. *Chemistry – A European Journal* **2017**, 23 (35), 8409-8413.

[5] Small, L. J.; Nenoff, T. M., Direct Electrical Detection of Iodine Gas by a Novel Metal-Organic-Framework-Based Sensor. *ACS Applied Materials & Interfaces* **2017**, 9 (51), 44649-44655.

[6] Small, L. J.; Hill, R. C.; Krumhansl, J. L.; Schindelholz, M. E.; Chen, Z.; Chapman, K. W.; Zhang, X.; Yang, S.; Schroder, M.; Nenoff, T. M., Reversible MOF-Based Sensors for the Electrical Detection of Iodine Gas. *ACS Applied Materials & Interfaces* **2019**, 11 (31), 27982-27988.

[7] Zhang, X.; da Silva, I.; Fazzi, R.; Sheveleva, A. M.; Han, X.; Spencer, B. F.; Sapchenko, S. A.; Tuna, F.; McInnes, E. J. L.; Li, M.; Yang, S.; Schroder, M., Iodine Adsorption in a Redox-Active Metal-Organic Framework: Electrical Conductivity Induced by Host-Guest Charge-Transfer. *Inorganic Chemistry* **2019**, 58 (20), 14145-14150.

[8] Gladysiak, A.; Nguyen, T. N.; Spodaryk, M.; Lee, J. H.; Neaton, J. B.; Zuttel, A.; Stylianou, K. C., Incarceration of Iodine in a Pyrene-Based Metal-Organic Framework. *Chemistry – A European Journal* **2019**, 25 (2), 501-506.

[9] Mani, P.; Mandal, N.; Roopesh, M.; Gopalakrishnan, H.; Datta, A.; Mandal, S., Enhancement in electrical conductivity of a porous indium based metal–organic framework upon I₂ uptake: combined experimental and theoretical investigations. *Journal of Materials Chemistry C* **2020**, 8 (14), 4836-4842.

[10] Gordillo, M. A.; Benavides, P. A.; Panda, D. K.; Saha, S., The Advent of Electrically Conducting Double-Helical Metal-Organic Frameworks Featuring Butterfly-Shaped Electron-Rich pi-Extended Tetrathiafulvalene Ligands. *ACS Applied Materials & Interfaces* **2020**, 12 (11), 12955-12961.

[11] Gandara, F.; Uribe-Romo, F. J.; Britt, D. K.; Furukawa, H.; Lei, L.; Cheng, R.; Duan, X.; O'Keeffe, M.; Yaghi, O. M., Porous, conductive metal-triazolates and their structural elucidation by the charge-flipping method. *Chemistry – A European Journal* **2012**, 18 (34), 10595-601.

[12] Kobayashi, Y.; Jacobs, B.; Allendorf, M. D.; Long, J. R., Conductivity, Doping, and Redox Chemistry of a Microporous Dithiolene-Based Metal–Organic Framework. *Chemistry of Materials* **2010**, 22 (14), 4120-4122.

[13] Yin, Z.; Wang, Q. X.; Zeng, M. H., Iodine release and recovery, influence of polyiodide anions on electrical conductivity and nonlinear optical activity in an interdigitated and interpenetrated bipillared-bilayer metal-organic framework. *Journal of the American Chemical Society* **2012**, 134 (10), 4857-63.

[14] Yue, Y.; Cai, P.; Xu, X.; Li, H.; Chen, H.; Zhou, H. C.; Huang, N., Conductive Metallophthalocyanine Framework Films with High Carrier Mobility as Efficient Chemiresistors. *Angewandte Chemie International Edition* **2021**, 60 (19), 10806-10813.

[15] Chaudhari, A. K.; Mukherjee, S.; Nagarkar, S. S.; Joarder, B.; Ghosh, S. K., Bi-porous metal–organic framework with hydrophilic and hydrophobic channels: selective gas sorption and reversible iodine uptake studies. *CrystEngComm* **2013**, 15 (45), 9465.