Supporting Information

One Pot Tandem Dual C=C and C=O Bond Reductions in β-Alkylation of Secondary

Alcohols with Primary Alcohols by Ruthenium Complexes of Amido and Picolyl

Functionalized N-Heterocyclic Carbenes

A.P. Prakasham^{\dagger , \perp}, Sabyasachi Ta^{\perp}, Shreyata Dey^{\perp} and Prasenjit Ghosh^{\perp ,*}

 $^{\perp}$ Department of Chemistry

Indian Institute of Technology Bombay

Powai, Mumbai 400 076, India

Email: pghosh@chem.iitb.ac.in

Fax: +91 22 2572 3480

[†]Current Affiliation: School of Chemistry, Tel Aviv University, Israel

Synthesis of 1-mesityl imidazole¹

To a mixture of mesitylamine (4.46 g, 33.0 mmol), 38 % aq. glyoxal (10.1 g, 66.0 mmol) and 35 % aq. formaldehyde (5.66 g, 66.0 mmol) in MeOH (ca. 60 mL) CH₃CO₂NH₄ (5.08 g, 66.0 mmol) was added. The reaction mixture was refluxed for 12 hours during which the initially formed yellow solid becomes black colored solution. The reaction mixture was then cooled to room temperature and the volatiles were evaporated under reduced pressure. The residue thus obtained was dissolved in ethyl acetate and washed with 10 % aq. NaOH solution followed by brine solution. The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated. The crude mass so obtained was finally purified by silica gel column chromatography using ethyl acetate/petroleum ether (1:4 v/v) mixed medium to give the product as a light brown solid (3.46 g, 56 %). ¹H NMR (CDCl₃, 400 MHz, 25 °C): δ ppm, 7.43 (s, 1H, NCHN), 7.23 (s, 1H, NCHCHN), 6.97 (s, 2H, 2,4,6-(CH3)3C6H2), 6.89 (s, 1H, NCHCHN), 2.34 $(s, 3H, 2, 4, 6-(CH_3)_3C_6H_2), 1.98 (s, 6H, 2, 4, 6-(CH_3)_3C_6H_2).$ ¹³C{¹H} NMR (CDCl₃, 125 MHz, 25) °C): δ ppm, 139.0 (NCHN), 137.6 (*ipso*-2,4,6-(CH₃)₃C₆H₂), 135.5 (2,4,6-(CH₃)₃C₆H₂), 133.5 (2,4,6-(CH₃)₃C₆H₂), 129.6 (NCHCHN), 129.1 (2,4,6-(CH₃)₃C₆H₂), 120.2 (NCHCHN), 21.1 $(2,4,6-(\underline{C}H_3)_3C_6H_2), 17.4 (2,4,6-(\underline{C}H_3)_3C_6H_2).$

Synthesis of 2-chloro-N-(2,6-Me₂-phenyl)acetamide²

To a solution of 2,6-dimethylaniline (2.00 g, 16.5 mmol) in CHCl₃ (*ca.* 25 mL), 2-chloroacetyl chloride (3.73 g, 33.0 mmol) was added drop wise at 0 °C and the reaction mixture was stirred at room temperature for 8 hours. After the completion of reaction, the reaction mixture was washed with saturated NaHCO₃ solution (*ca.* 3×50 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated. The residue so obtained was vacuum dried to give the product as a white solid (2.75 g, 84 %). ¹H NMR (CDCl₃, 500 MHz, 25 °C): δ ppm,

7.86 (br, 1H, N<u>*H*</u>), 7.16-7.13 (m, 1H, 2,6-(CH₃)₂C₆<u>*H*₃), 7.11-7.09 (m, 2H, 2,6-(CH₃)₂C₆<u>*H*₃), 4.25 (s, 2H, C<u>*H*</u>₂), 2.24 (s, 6H, 2,6-(C<u>*H*</u>₃)₂C₆H₃). ¹³C{¹H} NMR (CDCl₃, 125 MHz, 25 °C): δ ppm, 164.5 (<u>*C*</u>O), 135.5 (*o*-2,6-(CH₃)₂<u>C</u>₆H₃), 132.8 (*ipso*-2,6-(CH₃)₂<u>C</u>₆H₃), 128.5 (*m*-2,6-(CH₃)₂<u>C</u>₆H₃), 128.1 (*p*-2,6-(CH₃)₂<u>C</u>₆H₃), 42.9 (<u>*C*</u>H₂), 18.5 (2,6-(<u>*C*</u>H₃)₂C₆H₃).</u></u>

Synthesis of 1-(2,6-Me₂-phenyl)imidazole³

To a mixture of 2,6-dimethylaniline (4.00 g, 33.0 mmol), 38 % aq. glyoxal (10.1 g, 66.0 mmol) and 35 % aq. formaldehyde (5.66 g, 66.0 mmol) in MeOH (ca. 60 mL) CH₃CO₂NH₄ (5.08 g, 66.0 mmol) was added. The reaction mixture was refluxed for 12 hours during which the initially formed yellow solid becomes black colored solution. The reaction mixture was then cooled to room temperature and the volatiles were evaporated under reduced pressure. The residue thus obtained was dissolved in ethyl acetate and washed with 10 % aq. NaOH solution followed by brine solution. The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated. The crude mass so obtained was finally purified by silica gel column chromatography using ethyl acetate/petroleum ether (1:4 v/v) mixed medium to give the product as a light brown solid (1.96 g, 34 %). ¹H NMR (CDCl₃, 500 MHz, 25 °C): δ ppm, 7.46 (s, 1H, NCHN), 7.27-7.24 (m, 1H, 2,6-(CH₃)₂C₆H₃), 7.25 (t, 1H, ${}^{3}J_{HH} = 1$ Hz, NCHCHN), 7.17-7.15 (m, 2H, 2,6-(CH₃)₂C₆H₃), 6.92 (t, 1H, ${}^{3}J_{HH} = 1$ Hz, NCHCHN), 2.04 (s, 6H, 2,6-(CH₃)₂C₆H₃). ¹³C{¹H} NMR (CDCl₃, 125 MHz, 25 °C): δ ppm, 137.4 (NCHN), 136.1 (*ipso*-2,6-(CH₃)₂C₆H₃), 135.9 (2,6-(CH₃)₂C₆H₃), 129.8 (2,6-(CH₃)₂C₆H₃), 129.1 (NCHCHN), 128.5 (2,6-(CH₃)₂C₆H₃), 120.0 (NCH<u>C</u>HN), 17.6 (2,6-(<u>C</u>H₃)₂C₆H₃).

1,3-Diphenylpropan-1-ol (3)⁴

Colorless liquid [0.153 g, 72 % isolated yield (1c); 0.144 g, 68 % isolated yield (2c)] ¹H NMR (CDCl₃, 400 MHz, 25 °C): § 7.37–7.36 (m, 4H, C₆*H*₅CH(OH)CH₂CH₂C₆*H*₅), 7.32–7.28 (m, 3H, C₆H₅CH(OH)CH₂CH₂C₆H₅), 7.22–7.19 (m, 3H, C₆H₅CH(OH)CH₂CH₂C₆H₅), 4.71–4.68 (m, 1H, C₆H₅CH(OH)CH₂CH₂C₆H₅), 2.81–2.65 (m, 2H, C₆H₅CH(OH)CH₂CH₂C₆H₅), 2.20–2.00 (m, 2H, C₆H₅CH(OH)CH₂CH₂C₆H₅), 1.88 (b, 1H, C₆H₅CH(OH)CH₂CH₂C₆H₅). ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C): δ 144.7 (*ipso-C*₆H₅CH(OH)CH₂CH₂C₆H₅), 141.9 (C₆H₅CH(OH)CH₂CH₂ipso-C₆H₅), 128.7 (o-C₆H₅CH(OH)CH₂CH₂C₆H₅), 128.6 (C₆H₅CH(OH)CH₂CH₂-o-C₆H₅), 128.5 $(m-\underline{C}_{6}H_{5}CH(OH)CH_{2}CH_{2}C_{6}H_{5}),$ 127.8 $(p-\underline{C}_{6}H_{5}CH(OH)CH_{2}CH_{2}C_{6}H_{5}),$ 126.1 $(C_6H_5CH(OH)CH_2CH_2-m-\underline{C}_6H_5),$ 126.0 $(C_6H_5CH(OH)CH_2CH_2-p-\underline{C}_6H_5),$ 74.0 $(C_6H_5CH(OH)CH_2CH_2C_6H_5),$ 40.6 $(C_6H_5CH(OH)CH_2CH_2C_6H_5),$ 32.2 $(C_6H_5CH(OH)CH_2CH_2C_6H_5)$. GCMS (ESI): $[M]^+ m/z = 212$. Anal. Calcd. for $C_{15}H_{16}O$: C, 84.87; H, 7.60; Found: C, 84.17; H, 7.43.

1,3-Diphenylpropan-1-one (3')⁴

Colorless liquid [0.023 g, 11 % isolated yield (1c); 0.027 g, 13 % isolated yield (2c)] ¹H NMR (CDCl₃, 500 MHz, 25 °C): δ 8.01 (dd, 2H, ${}^{3}J_{H-H} = 8$ Hz, ${}^{4}J_{H-H} = 1$ Hz, C₆H₅COCH₂CH₂C₆H₅), 7.60 (dt, 1H, ${}^{3}J_{H-H} = 8$ Hz, ${}^{4}J_{H-H} = 1$ Hz, $C_{6}H_{5}COCH_{2}CH_{2}C_{6}H_{5}$), 7.50 (t, 2H, ${}^{3}J_{H-H} = 8$ Hz, C₆H₅COCH₂CH₂C₆H₅), 7.37-7.34 (m, 2H, C₆H₅COCH₂CH₂C₆H₅), 7.32-7.31 (m, 2H, $C_6H_5COCH_2CH_2C_6H_5$), 7.26 (t, 1H, ${}^{3}J_{H-H} = 7$ Hz, $C_6H_5COCH_2CH_2C_6H_5$), 3.35 (t, 2H, ${}^{3}J_{H-H} = 8$ Hz, $C_6H_5COCH_2CH_2C_6H_5$), 3.13 (t, 2H, ${}^{3}J_{H-H} = 8$ Hz, $C_6H_5COCH_2CH_2C_6H_5$). ${}^{13}C{}^{1}H{}$ NMR (CDCl₃, 125 MHz, 25 °C): δ 199.3 (C₆H₅COCH₂CH₂C₆H₅), 141.4 (*ipso-C*₆H₅COCH₂CH₂C₆H₅), $(C_6H_5COCH_2CH_2-ipso-C_6H_5),$ $(p-C_6H_5COCH_2CH_2C_6H_5),$ 137.0 133.2 128.7 (o -<u> $C_6H_5COCH_2CH_2C_6H_5$ </u>), 128.6 (*m*-<u>*C*6H₅COCH₂CH₂C₆H₅), 128.5 (C₆H₅COCH₂CH₂-*m*-<u>*C*6H₅),</u></u> 128.1 $(C_6H_5COCH_2CH_2-o-C_6H_5),$ 126.2 $(C_6H_5COCH_2CH_2-p-C_6H_5),$ 40.5 $(C_6H_5CO\underline{C}H_2CH_2C_6H_5)$, 30.2 $(C_6H_5COCH_2\underline{C}H_2C_6H_5)$. GCMS (ESI): $[M]^+ m/z = 210$.

3-(4-Methoxyphenyl)-1-phenylpropan-1-ol (4)⁴

Colorless liquid [0.215 g, 89 % isolated yield (**1c**); 0.208 g, 86 % isolated yield (**2c**)] ¹H NMR (CDCl₃, 400 MHz, 25 °C): δ 7.36–7.35 (m, 4H, C₆<u>H</u>₅CH(OH)CH₂CH₂-4-OCH₃-C₆H₄), 7.31–7.28 (m, 1H, C₆<u>H</u>₅CH(OH)CH₂CH₂-4-OCH₃-C₆H₄), 7.12 (d, 2H, ³J_{H-H} = 9 Hz, C₆H₅CH(OH)CH₂CH₂-4-OCH₃-C₆<u>H</u>₄), 6.84 (d, 2H, ³J_{H-H} = 8 Hz, C₆H₅CH(OH)CH₂CH₂-4-OCH₃-C₆<u>H</u>₄), 6.84 (d, 2H, ³J_{H-H} = 8 Hz, C₆H₅CH(OH)CH₂CH₂-4-OCH₃-C₆<u>H</u>₄), 4.69–4.66 (m, 1H, C₆H₅C<u>H</u>(OH)CH₂CH₂-4-OCH₃-C₆H₄), 3.79 (s, 3H, C₆H₅CH(OH)CH₂CH₂-4-OC<u>H</u>₃-C₆H₄), 2.74–2.58 (m, 2H, C₆H₅CH(OH)C<u>H₂CH₂-4-OCH₃-C₆H₄), 1.96 (b, 1H, C₆H₄), 2.16–1.97 (m, 2H, C₆H₅CH(OH)CH₂C<u>H₂-4-OCH₃-C₆H₄), 1.96 (b, 1H, C₆H₅CH(OH)C₄CH₂-4-OCH₃-C₆H₄), 3.79 (b, 1H, C₆H₅CH(OH)CH₂C<u>H₂-4-OCH₃-C₆H₄), 1.96 (b, 1H, C₆H₅CH(OH)C₄CH₂-4-OCH₃-C₆H₄), 1.96 (b, 1H, C₆H₅CH(OH)C₄CH₂-4-OCH₃-C₆H₄), 3.79 (c, 1H, C₆H₅CH(OH)C₄C₄-4-OCH₃-C₆H₄), 1.96 (b, 1H, C₆H₅CH(OH)C₄C₄-4-OCH₃-C₆H₄), 3.79 (c, 1H, C₆H₅CH(OH)C₄C₄-4-OCH₃-C₆H₄), 1.96 (c, 1H, C₆C₄-4-OCH₃-C₆H₄), 2.16–1.97 (c, 2H, C₆H₅CH(OH)C₄C₄-4-OCH₃-C₆H₄), 1.96 (c, 1H, C₆C₄-4-OCH₃-C₆-4-OCH_{3</u></u></u>}

C₆H₅CH(O<u>H</u>)CH₂CH₂-4-OCH₃-C₆H₄). ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C): δ 157.9 (C₆H₅CH(OH)CH₂CH₂-4-OCH₃-*p*-<u>C</u>₆H₄), 144.8 (*ipso*-<u>C</u>₆H₅CH(OH)CH₂CH₂-4-OCH₃-C₆H₄), 134.0 (C₆H₅CH(OH)CH₂CH₂-4-OCH₃-*ipso*-<u>C</u>₆H₄), 129.5 (C₆H₅CH(OH)CH₂CH₂-4-OCH₃-*o*-<u>C</u>₆H₄), 128.7 (*m*-<u>C</u>₆H₅CH(OH)CH₂CH₂-4-OCH₃-C₆H₄), 127.8 (*p*-<u>C</u>₆H₅CH(OH)CH₂CH₂-4-OCH₃-C₆H₄), 126.1 (*o*-<u>C</u>₆H₅CH(OH)CH₂CH₂-4-OCH₃-C₆H₄), 114.0 (C₆H₅CH(OH)CH₂CH₂-4-OCH₃-*o*-<u>C</u>₆H₄), 74.0 (C₆H₅CH(OH)CH₂CH₂-4-OCH₃-C₆H₄), 55.4 (C₆H₅CH(OH)CH₂CH₂-4-OCH₃-C₆H₄), 40.8 (C₆H₅CH(OH)<u>C</u>H₂CH₂-4-OCH₃-C₆H₄), 31.3 (C₆H₅CH(OH)CH₂<u>C</u>H₂-4-OCH₃-C₆H₄), GCMS (ESI): [M]⁺ *m*/*z* = 242. Anal. Calcd. for C₁₆H₁₈O₂: C, 79.31; H, 7.49; Found: C, 78.97; H, 7.02.

1-Phenyl-3-(thiophen-2-yl)-propan-1-ol (5)⁴

Colorless liquid [0.161 g, 74 % isolated yield (1c); 0.137 g, 63 % isolated yield (2c)] ¹H NMR (CDCl₃, 500 MHz, 25 °C): δ 7.40–7.39 (m, 4H, C₆<u>H</u>₅CH(OH)CH₂CH₂C4H₃S), 7.34–7.31 (m, 1H, C₆<u>H</u>₅CH(OH)CH₂CH₂C4H₃S), 7.15 (dd, 1H, ³J_{H-H} = 5 Hz, ⁴J_{H-H} = 1 Hz, C₆H₅CH(OH)CH₂CH₂C4<u>H</u>₃S), 6.95 (dd, 1H, ³J_{H-H} = 5 Hz, ⁴J_{H-H} = 2 Hz, C₆H₅CH(OH)CH₂CH₂C4<u>H</u>₃S), 6.84-6.83 (m, 1H, C₆H₅CH(OH)CH₂CH₂C4<u>H</u>₃S), 4.78–4.76 (m, 1H, C₆H₅C<u>H</u>(OH)CH₂CH₂C4₄H₃S), 2.98–2.93 (m, 2H, C₆H₅CH(OH)C<u>H</u>₂CH₂C4H₃S), 2.26–2.18 (m, 1H, C₆H₅CH(OH)CH₂CH₂C4H₃S), 2.15–2.08 (m, 1H, C₆H₅CH(OH)CH₂C<u>H</u>₂C4H₃S), 1.66 (b, 1H, C₆H₅CH(O<u>H</u>)CH₂CH₂C4H₃S). ¹³C{¹H} NMR (CDCl₃, 125 MHz, 25 °C): δ 144.8 (*ipso-*<u>C</u>₆H₅CH(OH)CH₂CH₂C4H₃S), 144.5 (C₆H₅CH(OH)CH₂CH₂-*ipso*-<u>C</u>4H₃S), 128.8 (*m*- $C_6H_5CH(OH)CH_2CH_2C_4H_3S),$ 127.9 $(C_6H_5CH(OH)CH_2CH_2C_4H_3S),$ 126.9 $(C_6H_5CH(OH)CH_2CH_2C_4H_3S),$ 126.1 $(o-C_6H_5CH(OH)CH_2CH_2C_4H_3S),$ 124.5 (p- $C_6H_5CH(OH)CH_2CH_2C_4H_3S),$ 123.3 $(C_6H_5CH(OH)CH_2CH_2C_4H_3S),$ 73.7 $(C_6H_5CH(OH)CH_2CH_2C_4H_3S),$ 40.9 $(C_6H_5CH(OH)CH_2CH_2C_4H_3S),$ 26.4 $(C_6H_5CH(OH)CH_2CH_2C_4H_3S)$. GCMS (ESI): $[M]^+ m/z = 218$. Anal. Calcd. for $C_{13}H_{14}OS$: C, 71.52; H, 6.46; Found: C, 69.81; H, 8.02.

3-(Furan-2-yl)-1-phenylpropan-1-ol (6)⁴

Colorless liquid [0.138 g, 68 % isolated yield (1c); 0.141 g, 70 % isolated yield (2c)] ¹H NMR (CDCl₃, 500 MHz, 25 °C): δ 7.30–7.29 (m, 4H, C₆H₅CH(OH)CH₂CH₂C₄H₃O), 7.24–7.23 (m, 1H, C₆H₅CH(OH)CH₂CH₂C₄H₃O), 7.23-7.21 (m, 1H, C₆H₅CH(OH)CH₂CH₂C₄H₃O), 6.21 (dd, 1H, ${}^{3}J_{H-H} = 4$ Hz, ${}^{4}J_{H-H} = 2$ Hz, $C_{6}H_{5}CH(OH)CH_{2}CH_{2}C_{4}H_{3}O)$, 5.94–5.93 (m, 1H, C₆H₅CH(OH)CH₂CH₂C₄H₃O), 4.66–4.64 (m, 1H, C₆H₅CH(OH)CH₂CH₂C₄H₃O), 2.70–2.63 (m, 2H, C₆H₅CH(OH)CH₂CH₂C₄H₃O), 2.10–1.96 (m, 2H, C₆H₅CH(OH)CH₂CH₂C₄H₃O), 1.82 (b, ¹³C{¹H} NMR (CDCl₃, 125 MHz, 25 °C): δ 155.7 1H, $C_6H_5CH(OH)CH_2CH_2C_4H_3O$). $(C_6H_5CH(OH)CH_2CH_2-ipso-C_4H_3O),$ $(ipso-C_6H_5CH(OH)CH_2CH_2C_4H_3O),$ 144.5 141.1 $(C_6H_5CH(OH)CH_2CH_2C_4H_3O),$ 128.7 $(m-C_6H_5CH(OH)CH_2CH_2C_4H_3O),$ 127.9 (p- $C_6H_5CH(OH)CH_2CH_2C_4H_3O),$ 126.1 $(o-C_6H_5CH(OH)CH_2CH_2C_4H_3O),$ 110.3 $(C_6H_5CH(OH)CH_2CH_2C_4H_3O),$ 105.2 $(C_6H_5CH(OH)CH_2CH_2C_4H_3O),$ 73.9 37.3 $(C_6H_5CH(OH)CH_2CH_2C_4H_3O),$ $(C_6H_5CH(OH)CH_2CH_2C_4H_3O),$ 24.6

(C₆H₅CH(OH)CH₂<u>C</u>H₂C₄H₃O). GCMS (ESI): $[M]^+ m/z = 202$. Anal. Calcd. for C₁₃H₁₄O₂: C, 77.20; H, 6.98; Found: C, 77.71; H, 7.35.

1-Phenylhexan-1-ol $(7)^4$

Colorless liquid [0.126 g, 71 % isolated yield (1c); 0.123 g, 69 % isolated yield (2c)] ¹H NMR (CDCl₃, 400 MHz, 25 °C): δ 7.27–7.26 (m, 4H, C₆H₅CH(OH)CH₂CH₂CH₂CH₂CH₂CH₃), 7.21–7.18 1H. $C_6H_5CH(OH)CH_2CH_2CH_2CH_2CH_3),$ 4.59-4.55 (m. (m, 1H. $C_6H_5CH(OH)CH_2CH_2CH_2CH_3$, 1.85 (b, 1H. C₆H₅CH(OH)CH₂CH₂CH₂CH₂CH₃), 1.76-1.57 (m. 2H. $C_6H_5CH(OH)CH_2CH_2CH_2CH_2CH_3),$ 1.35 - 1.186H. (m, C₆H₅CH(OH)CH₂CH₂CH₂CH₂CH₂CH₃) 0.81-0.78 (m, 3H, C₆H₅CH(OH)CH₂CH₂CH₂CH₂CH₂CH₃). ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C): δ 145.1 (*ipso-C*₆H₅CH(OH)CH₂CH₂CH₂CH₂CH₂CH₃), 128.6 $(m-\underline{C}_{6}H_{5}CH(OH)CH_{2}CH_{2}CH_{2}CH_{2}CH_{3})$, 127.6 $(p-\underline{C}_{6}H_{5}CH(OH)CH_{2}CH_{2}CH_{2}CH_{2}CH_{3})$, 126.1 (*o*-<u>*C*</u>₆H₅CH(OH)CH₂CH₂CH₂CH₂CH₂CH₃), 74.9 (C₆H₅<u>*C*</u>H(OH)CH₂CH₂CH₂CH₂CH₂CH₃), 39.2 $(C_6H_5CH(OH)\underline{C}H_2CH_2CH_2CH_2CH_3),$ 31.9 $(C_6H_5CH(OH)CH_2CH_2CH_2CH_2CH_3),$ 25.7 $(C_6H_5CH(OH)CH_2CH_2CH_2CH_2CH_3),$ 22.7 $(C_6H_5CH(OH)CH_2CH_2CH_2CH_2CH_3),$ 14.2 $(C_6H_5CH(OH)CH_2CH_2CH_2CH_2CH_3)$. GCMS (ESI): $[M]^+ m/z = 178$. Anal. Calcd. for $C_{12}H_{18}O$: C, 80.85; H, 10.18; Found: C, 80.05; H, 10.07.

3-Phenyl-1-(o-tolyl)propan-1-ol (8)⁴

S8

Colorless liquid [0.164 g, 73 % isolated yield (1c); 0.176 g, 78 % isolated yield (2c)] ¹H NMR (CDCl₃, 500 MHz, 25 °C): δ 7.53 (dd, 1H, ${}^{3}J_{HH}$ = 8 Hz, ${}^{4}J_{HH}$ = 1 Hz, 2-CH₃-C₆H₄CH(OH)CH₂CH₂C₆H₅), 7.33–7.30 (m, 2H, 2-CH₃-C₆H₄CH(OH)CH₂CH₂C₆H₅), 7.28–7.14 6H. $2-CH_3-C_6H_4CH(OH)CH_2CH_2C_6H_5),$ 4.97 - 4.951H. 2-CH₃-(m, (m. C₆H₄CH(OH)CH₂CH₂C₆H₅), 2.91–2.85 (m, 1H, 2-CH₃-C₆H₄CH(OH)CH₂CH₂C₆H₅), 2.80–2.74 (m, 1H, 2-CH₃-C₆H₄CH(OH)CH₂CH₂C₆H₅), 2.27 (s, 3H, 2-CH₃-C₆H₄CH(OH)CH₂CH₂C₆H₅), 2.14-1.99 2H. 2-CH₃-C₆H₄CH(OH)CH₂C_{*H*₂C₆H₅),} 1.68 (m, (b, 1H, 2-CH₃- $^{13}C{^{1}H}$ NMR (CDCl₃, 125 MHz, 25 °C): δ 142.9 (2-CH₃- $C_6H_4CH(OH)CH_2CH_2C_6H_5).$ C₆H₄CH(OH)CH₂CH₂-*ipso*-C₆H₅), 142.0 (2-CH₃-*ipso*-C₆H₄CH(OH)CH₂CH₂C₆H₅), 134.6 (2-CH₃-C₆H₄CH(OH)CH₂CH₂C₆H₅), 130.6 (2-CH₃-C₆H₄CH(OH)CH₂CH₂-*p*-C₆H₅), 128.6 (2-CH₃-C₆H₄CH(OH)CH₂CH₂-*m*-<u>C</u>₆H₅), 128.5 (2-CH₃-C₆H₄CH(OH)CH₂CH₂-*o*-<u>C</u>₆H₅), 127.4 (2-CH₃- $\underline{C}_{6}H_{4}CH(OH)CH_{2}CH_{2}C_{6}H_{5}),$ 126.5 $(2-CH_3-\underline{C}_6H_4CH(OH)CH_2CH_2C_6H_5),$ 126.1 (2-CH₃- $(2-CH_3-\underline{C}_6H_4CH(OH)CH_2CH_2C_6H_5),$ $\underline{C}_{6}H_{4}CH(OH)CH_{2}CH_{2}C_{6}H_{5}),$ 125.3 70.1 (2-CH₃-39.6 $(2-CH_3-C_6H_4CH(OH)CH_2CH_2C_6H_5),$ 32.5 $C_6H_4CH(OH)CH_2CH_2C_6H_5),$ (2-CH₃- $C_{6}H_{4}CH(OH)CH_{2}CH_{2}C_{6}H_{5}$, 19.1 (2-CH₃-C₆H₄CH(OH)CH₂CH₂C₆H₅). GCMS (ESI): [M]⁺ m/z = 226. Anal. Calcd. for C₁₆H₁₈O: C, 84.91; H, 8.02; Found: C, 84.72; H, 8.21.

3-Phenyl-1-(p-tolyl)propan-1-ol (9)⁴

Colorless liquid [0.168 g, 74 % isolated yield (1c); 0.163 g, 72 % isolated yield (2c)] ¹H NMR (CDCl₃, 500 MHz, 25 °C): 8 7.32-7.27 (m, 4H, 4-CH₃-C₆H₄CH(OH)CH₂CH₂C₆H₅), 7.23-7.19 5H, $4-CH_3-C_6H_4CH(OH)CH_2CH_2C_6H_5),$ (m, 4.70-4.67 (m, 1H, 4-CH₃- $C_6H_4C_H(OH)CH_2CH_2C_6H_5)$, 2.80–2.66 (m, 2H, 4-CH₃-C₆H₄CH(OH)C<u>H</u>₂CH₂C₆H₅), 2.38 (s, 3H, 4-C<u>H</u>₃-C₆H₄CH(OH)CH₂CH₂C₆H₅), 2.20–2.13 (m, 1H, 4-CH₃-C₆H₄CH(OH)CH₂C<u>H</u>₂C₆H₅), 2.09 - 2.011H, 1.63 (m, 4-CH₃-C₆H₄CH(OH)CH₂C<u>H₂C₆H₅),</u> (b, 1H, 4-CH₃- $C_{6}H_{4}CH(O\underline{H})CH_{2}CH_{2}C_{6}H_{5})$. ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C): δ 142.0 (4-CH₃-C₆H₄CH(OH)CH₂CH₂-*ipso*-<u>C</u>₆H₅), 141.8 (4-CH₃-*ipso*-<u>C</u>₆H₄CH(OH)CH₂CH₂C₆H₅), 137.5 (4-CH₃-<u>C</u>₆H₄CH(OH)CH₂CH₂C₆H₅), 129.4 (4-CH₃-<u>C</u>₆H₄CH(OH)CH₂CH₂C₆H₅), 128.6 (4-CH₃-C₆H₄CH(OH)CH₂CH₂-*m*-<u>C</u>₆H₅), 128.5 (4-CH₃-C₆H₄CH(OH)CH₂CH₂-*o*-<u>C</u>₆H₅), 126.1 (4-CH₃-<u> $C_6H_4CH(OH)CH_2CH_2C_6H_5$ </u>), 126.0 (4-CH₃-C₆H₄CH(OH)CH₂CH₂-*p*-<u>*C*₆H₅), 73.9</u> (4-CH₃- $C_6H_4CH(OH)CH_2CH_2C_6H_5),$ 40.6 $(4-CH_3-C_6H_4CH(OH)\underline{C}H_2CH_2C_6H_5),$ 32.3 (4-CH₃- $C_{6}H_{4}CH(OH)CH_{2}CH_{2}C_{6}H_{5}$, 21.3 (4-<u>C</u>H₃-C₆H₄CH(OH)CH₂CH₂C₆H₅). GCMS (ESI): [M]⁺ m/z = 226. Anal. Calcd. for C₁₆H₁₈O: C, 84.91; H, 8.02; Found: C, 84.83; H, 7.83.

1-(4-iso-Propylphenyl)-3-phenylpropan-1-ol (10)⁴

Colorless liquid [0.188 g, 74 % isolated yield (1c); 0.178 g, 70 % isolated yield (2c)] ¹H NMR (CDCl₃, 400 MHz, 25 °C): δ 7.30-7.26 (m, 4H, 4-(CH(CH₃)₂)-C₆H₄CH(OH)CH₂CH₂C₆H₅), 7.23-7.19 (m, 5H, 4-(CH(CH₃)₂)-C₆H₄CH(OH)CH₂CH₂C₆H₅), 4.68-4.65 (m, 1H, 4-(CH(CH₃)₂)- $^{3}J_{\rm HH}$ $C_6H_4CH(OH)CH_2CH_2C_6H_5),$ 2.92 (sept, 1H. = Hz. 7 $4-(CH(CH_3)_2) C_6H_4CH(OH)CH_2CH_2C_6H_5)$, 2.81–2.64 (m, 2H, 4-(CH(CH_3)_2)-C_6H_4CH(OH)CH_2CH_2C_6H_5), 2.18-1.99 (m, 2H, 4-(CH(CH₃)₂)-C₆H₄CH(OH)CH₂CH₂C₆H₅), 1.74 (b, 1H, 4-(CH(CH₃)₂)- $C_6H_4CH(OH)CH_2CH_2C_6H_5),$ 1.26 ${}^{3}J_{\rm HH}$ Hz, (d, 6H, 7 $4-(CH(CH_3)_2)-$ =C₆H₄CH(OH)CH₂CH₂C₆H₅). ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C): δ 148.6 (4-(CH(CH₃)₂)-C₆H₄CH(OH)CH₂CH₂C₆H₅), 142.1 (4-(CH(CH₃)₂)-C₆H₄CH(OH)CH₂CH₂-*ipso*-C₆H₅), 142.0 (4-(CH(CH₃)₂)-*ipso*-<u>C</u>₆H₄CH(OH)CH₂CH₂C₆H₅), 128.6 (4-(CH(CH₃)₂)-C₆H₄CH(OH)CH₂CH₂-*m*-128.5 (4-(CH(CH₃)₂)-C₆H₄CH(OH)CH₂CH₂-*o*-<u>C</u>₆H₅), 126.7 $C_{6}H_{5}$), $(4-(CH(CH_3)_2) C_{6}H_{4}CH(OH)CH_{2}CH_{2}C_{6}H_{5}$, 126.1 (4-(CH(CH_{3})_{2})- $C_{6}H_{4}CH(OH)CH_{2}CH_{2}C_{6}H_{5}$), 126.0 (4- $(CH(CH_3)_2)-C_6H_4CH(OH)CH_2CH_2-p-C_6H_5), 73.9 (4-(CH(CH_3)_2)-C_6H_4CH(OH)CH_2CH_2C_6H_5),$ 40.5 $(4-(CH(CH_3)_2)-C_6H_4CH(OH)\underline{C}H_2CH_2C_6H_5),$ 34.0 $(4-(\underline{C}H(CH_3)_2) C_6H_4CH(OH)CH_2CH_2C_6H_5)$, 32.3 (4-(CH(CH_3)_2)-C_6H_4CH(OH)CH_2CH_2C_6H_5), 24.2 (4- $(CH(CH_3)_2)-C_6H_4CH(OH)CH_2CH_2C_6H_5)$. GCMS (ESI): $[M]^+ m/z = 254$. Anal. Calcd. for C₁₈H₂₂O: C, 84.99; H, 8.72; Found: C, 85.07; H, 8.15.

1-(4-(tert-Butyl)phenyl)-3-phenylpropan-1-ol (11)⁴

Colorless liquid [0.192 g, 72 % isolated yield (1c); 0.202 g, 75 % isolated yield (2c)] ¹H NMR $(CDCl_3, 400 \text{ MHz}, 25 \text{ °C}): \delta 7.40 \text{ (d, } 2H, {}^3J_{HH} = 8 \text{ Hz}, 4-(C(CH_3)_3)-C_6H_4CH(OH)CH_2CH_2C_6H_5),$ 7.34-7.26 (m, 4H, 4-(C(CH₃)₃)-C₆H₄CH(OH)CH₂CH₂C₆H₅), 7.23-7.18 (m, 3H, 4-(C(CH₃)₃)- $C_{6}H_{4}CH(OH)CH_{2}CH_{2}C_{6}H_{5}$, 4.69–4.66 (m, 1H, 4-(C(CH_{3})_{3})-C_{6}H_{4}CH(OH)CH_{2}CH_{2}C_{6}H_{5}), 2.81-2.66 (m, 2H, 4-(C(CH₃)₃)-C₆H₄CH(OH)CH₂CH₂C₆H₅), 2.21-2.00 (m, 2H, 4-(C(CH₃)₃)-C₆H₄CH(OH)CH₂CH₂C₆H₅), 1.88 (b, 1H, 4-(C(CH₃)₃)-C₆H₄CH(OH)CH₂CH₂C₆H₅), 1.35 (s, 9H, 4-(C(CH₃)₃)-C₆H₄CH(OH)CH₂CH₂C₆H₅). ¹³C{¹H} NMR (CDCl₃, 100 MHz, 25 °C): δ 150.7 (4- $(C(CH_3)_3)-C_6H_4CH(OH)CH_2CH_2C_6H_5), 142.0 (4-(C(CH_3)_3)-C_6H_4CH(OH)CH_2CH_2-ipso-C_6H_5), 142.0 (4-(C(CH_3)_3)-C_6H_4CH(OH)CH_2-ipso-C_6H_5), 142.0 (4-(C(CH_3)_3)-C_6H_5), 142.0 (4-(C(CH_3)_3)-C_6H_5), 142.0 (4-(CH_3)_3)-C_6H_5), 142.0 (4-(CH_3)_3), 142$ 141.7 (4-(C(CH₃)₃)-*ipso*-<u>C</u>₆H₄CH(OH)CH₂CH₂C₆H₅), 128.6 $(4-(C(CH_3)_3)-$ C₆H₄CH(OH)CH₂CH₂-*m*-<u>C</u>₆H₅), 128.5 (4-(C(CH₃)₃)-C₆H₄CH(OH)CH₂CH₂-*o*-<u>C</u>₆H₅), 126.0 (4- $(C(CH_3)_3)-C_6H_4CH(OH)CH_2CH_2-p-C_6H_5), 125.8 (4-(C(CH_3)_3)-C_6H_4CH(OH)CH_2CH_2C_6H_5),$ 125.6 $(4-(C(CH_3)_3)-C_6H_4CH(OH)CH_2CH_2C_6H_5),$ 73.8 $(4-(C(CH_3)_3)-$ C₆H₄<u>C</u>H(OH)CH₂CH₂C₆H₅), 40.4 (4-(C(CH₃)₃)-C₆H₄CH(OH)<u>C</u>H₂CH₂C₆H₅), 34.7 (4-(<u>C</u>(CH₃)₃)-C₆H₄CH(OH)CH₂CH₂C₆H₅), 32.3 (4-(C(CH₃)₃)-C₆H₄CH(OH)CH₂<u>C</u>H₂C₆H₅), 31.5 (4-(C(<u>C</u>H₃)₃)- $C_6H_4CH(OH)CH_2CH_2C_6H_5$). GCMS (ESI): $[M]^+ m/z = 268$. Anal. Calcd. for $C_{19}H_{24}O$: C, 85.03; H, 9.01; Found: C, 84.33; H, 8.30.

1-(Benzofuran-2-yl)-3-phenylpropan-1-ol (12)⁴

Colorless liquid [0.171 g, 68 % isolated yield (1c); 0.161 g, 64 % isolated yield (2c)] ¹H NMR (CDCl₃, 400 MHz, 25 °C): δ 7.55 (dd, 1H, ³J_{HH} = 8 Hz, ⁴J_{HH} = 1 Hz, $C_{8}H_{5}OCH(OH)CH_{2}CH_{2}C_{6}H_{5}$, 7.47 (d, 1H, ${}^{3}J_{HH} = 8$ Hz, $C_{8}H_{5}OCH(OH)CH_{2}CH_{2}C_{6}H_{5}$), 7.32-7.19 (m, 7H, C₈H₅OCH(OH)CH₂CH₂C₆H₅), 6.64 (s, 1H, C₈H₅OCH(OH)CH₂CH₂C₆H₅), 4.83 (t, $^{3}J_{\rm HH}$ 1H. Hz, $C_8H_5OCH(OH)CH_2CH_2C_6H_5),$ 2.83 - 2.772H. = 7 (m. C₈H₅OCH(OH)CH₂CH₂C₆H₅), 2.31–2.25 (m, 2H, C₈H₅OCH(OH)CH₂CH₂C₆H₅), 1.65 (d, 1H, ${}^{3}J_{\text{HH}} = 7 \text{ Hz}, C_{8}H_{5}\text{OCH}(OH)CH_{2}CH_{2}C_{6}H_{5}).$ ${}^{13}C\{{}^{1}\text{H}\}$ NMR (CDCl₃, 125 MHz, 25 °C): δ 159.3 $(ipso-\underline{C}_8H_5OCH(OH)CH_2CH_2C_6H_5),$ 155.0 $(\underline{C}_8H_5OCH(OH)CH_2CH_2C_6H_5),$ 141.5 $(C_8H_5OCH(OH)CH_2CH_2-ipso-\underline{C}_6H_5),$ 128.7 $(C_8H_5OCH(OH)CH_2CH_2-m-C_6H_5),$ 128.6 128.3 126.2 $(C_8H_5OCH(OH)CH_2CH_2-o-\underline{C}_6H_5),$ $(\underline{C}_{8}H_{5}OCH(OH)CH_{2}CH_{2}C_{6}H_{5}),$ 124.4 123.0 (C₈H₅OCH(OH)CH₂CH₂-*p*-<u>*C*</u>₆H₅), $(\underline{C}_{8}H_{5}OCH(OH)CH_{2}CH_{2}C_{6}H_{5}),$ 121.2 $(C_8H_5OCH(OH)CH_2CH_2C_6H_5),$ $(C_8H_5OCH(OH)CH_2CH_2C_6H_5),$ 111.4 $(\underline{C}_{8}H_{5}OCH(OH)CH_{2}CH_{2}C_{6}H_{5}),$ 102.9 $(\underline{C}_8H_5OCH(OH)CH_2CH_2C_6H_5),$ 67.7 37.2 $(C_8H_5OCH(OH)CH_2CH_2C_6H_5),$ $(C_8H_5OCH(OH)\underline{C}H_2CH_2C_6H_5),$ 31.8 $(C_8H_5OCH(OH)CH_2CH_2C_6H_5)$. GCMS (ESI): $[M]^+ m/z = 252$. Anal. Calcd. for $C_{17}H_{16}O_2$: C, 80.93; H, 6.39; Found: C, 81.13; H, 5.87.

Synthesis of 2-Phenylchroman⁵

Colorless dense liquid [0.0346 g, 17 % isolated yield (**1c**); 0.0197 g, 10 % isolated yield (**2c**)]. ¹H NMR (CDCl₃, 500 MHz, 25 °C): δ 7.47–7.45 (m, 2H, C₆<u>H</u>₄CH₂CH₂CH(O)C₆H₅), 7.42 (t, 2H, ${}^{3}J_{\text{H-H}} = 8$ Hz, C₆<u>H</u>₄CH₂CH₂CH(O)C₆H₅), 7.35 (t, 1H, ${}^{3}J_{\text{H-H}} = 8$ Hz, C₆H₄CH₂CH₂CH(O)C₆<u>H</u>₅), 7.17–7.11 (m, 2H, C₆H₄CH₂CH₂CH(O)C₆<u>H</u>₅), 6.95-6.89 (m, 2H, C₆H₄CH₂CH₂CH(O)C₆<u>H</u>₅), 5.10 (dd, 1H, ${}^{3}J_{\text{H-H}} = 8$ Hz, ${}^{1}J_{\text{H-H}} = 2$ Hz, C₆H₄CH₂CH₂CH₂O(O)C₆H₅), 3.07–3.00 (m, 1H, C₆H₄C<u>H</u>₂CH₂CH(O)C₆H₅), 2.86–2.81 (m, 1H, C₆H₄C<u>H</u>₂CH₂CH(O)C₆H₅), 2.27-2.22 (m, 1H, C₆H₄CH₂C<u>H</u>₂CH(O)C₆H₅), 2.17-2.08 (m, 1H, C₆H₄CH₂C<u>H</u>₂CH(O)C₆H₅). ${}^{13}C{}^{1}H{}$ NMR (CDCl₃, 125 MHz, 25 °C): δ ppm, 155.1, 141.8, 129.5, 128.5, 127.8, 127.3, 125.9, 121.8, 120.3, 116.9, 77.8, 29.9, 25.0. GCMS (ESI): [M]⁺ m/z = 210. Anal. Calcd. for C₁₅H₁₄O•1/4CH₂Cl₂: C, 79.12.11; H, 6.31; Found: C, 79.34; H, 5.58 %.

2-(Naphthalen-2-yl)chroman (14)⁵

Yellow Solid [0.0618 g, 36 % isolated yield (**1c**); 0.0473 g, 28 % isolated yield (**2c**)]. ¹H NMR (CDCl₃, 400 MHz, 25 °C): δ 7.90–7.85 (m, 4H, C₆H₄CH₂CH₂CH(O)C₆<u>H</u>₃C₄<u>H</u>₄), δ 7.56–7.48 (m, 3H, C₆H₄CH₂CH₂CH(O)C₆<u>H</u>₃C₄<u>H</u>₄), δ 7.18–7.12 (m, 2H, C₆<u>H</u>₄CH₂CH₂CH(O)C₆H₃C₄H₄), δ 6.98–6.96 (m, 1H, C₆<u>H</u>₄CH₂CH₂CH(O)C₆H₃C₄H₄), δ 6.98–6.96 (m, 1H, C₆<u>H</u>₄CH₂CH₂CH(O)C₆H₃C₄H₄), δ 7.18–7.12 (m, 2H, C₆<u>H</u>₄CH₂CH₂CH(O)C₆H₃C₄H₄), δ 6.98–6.96 (m, 1H, C₆<u>H</u>₄CH₂CH₂CH(O)C₆H₃C₄H₄), δ 7.18–7.12 (m, 2H, C₆<u>H</u>₄CH₂CH₂CH(O)C₆H₃C₄H₄), δ 7.18–7.12 (m, 1H, ³J_{H-H} = 8 Hz, C₆<u>H</u>₄CH₂CH₂CH(O)C₆H₃C₄H₄), 5.25 (dd, 1H, ³J_{H-H} = 8 Hz, ¹J_{H-H} = 2 Hz, C₆H₄CH₂CH₂CH₂CH(O)C₆H₃C₄H₄), 3.09–3.01 (m, 1H, C₆H₄C<u>H</u>₂CH₂CH(O)C₆H₃C₄H₄), 2.87–2.81 (m, 1H, C₆H₄C<u>H</u>₂CH₂CH(O)C₆H₃C₄H₄), 2.34-2.27 (m, 1H, C₆H₄CH₂C<u>H</u>₂CH(O)C₆H₃C₄H₄), 2.14-2.14 (m, 1H, C₆H₄CH₂C<u>H</u>₂CH(O)C₆H₃C₄H₄). ¹³C{¹H} NMR (CDCl₃, 125 MHz, 25 °C): δ ppm, 155.1, 139.1, 133.3, 133.1, 129.6, 128.3, 128.1, 127.7, 127.4, 126.2, 125.9, 124.9, 124.0,

121.9, 120.4, 116.9, 77.9, 29.9, 25.2. GCMS (ESI): $[M]^+ m/z = 260$. Anal. Calcd. for $C_{19}H_{16}O_{.1}/4CH_{2}Cl_{2}$: C, 82.12; H, 5.91; Found: C, 81.68; H, 5.66 %.

2-(Benzo[1,3]dioxol-5-yl)chroman (15)⁵

Colorless dense liquid [0.0301 g, 18 % isolated yield (1c); 0.0246 g, 15 % isolated yield (2c)]. ¹H NMR (CDCl₃, 500 MHz, 25 °C): δ 7.15–7.12 (m, 2H, C₆H₄CH₂CH₂CH(O)C₆H₃OCH₂O), δ 6.97 (s, 1H. $C_6H_4CH_2CH_2CH(O)C_6H_3OCH_2O),$ δ 6.93-6.89 (m, 3H, C₆H₄CH₂CH₂CH(O)C₆H₃OCH₂O), δ 6.85–6.84 (m, 1H, C₆H₄CH₂CH₂CH(O)C₆H₃OCH₂O), 5.99 (s, 2H, C₆H₄CH₂CH₂CH(O)C₆H₃OC<u>*H*₂O), 4.99 (dd, 1H, ${}^{3}J_{H-H} = 8$ Hz, ${}^{1}J_{H-H} = 2$ Hz,</u> $C_{6}H_{4}CH_{2}CH_{2}CH_{2}CH_{0}OC_{6}H_{3}OCH_{2}O), 3.05-2.98 (m, 1H, C_{6}H_{4}CH_{2}CH_{2}CH_{0}OC_{6}H_{3}OCH_{2}O),$ 2.86-2.81 $C_6H_4CH_2CH_2CH(O)C_6H_3OCH_2O),$ (m, 1H. 2.22-2.17 (m, 1H. C₆H₄CH₂CH₂CH(O)C₆H₃OCH₂O), 2.14-2.05 (m, 1H, C₆H₄CH₂CH₂CH(O)C₆H₃OCH₂O). ¹³C{¹H} NMR (CDCl₃, 125 MHz, 25 °C): δ ppm, 155.1, 147.8, 147.2, 135.6. 129.5, 127.4, 121.7, 120.3, 119.6, 116.9, 108.2, 106.7, 101.1, 77.7, 29.9, 25.2. GCMS (ESI): $[M]^+ m/z = 254$. Anal. Calcd. for C₁₆H₁₄O₃: C, 75.58; H, 5.55; Found: C, 74.42; H, 4.29 %.

2-(4-Tolyl)chroman (16)⁵

Colorless solid [0.0175 g, 12 % isolated yield (1c); 0.0153 g, 11 % isolated yield (2c)] ¹H NMR (CDCl₃, 400 MHz, 25 °C): δ 7.32–7.31 (m, 2H, C₆H₄CH₂CH₂CH(O)C₆H₄CH₃), 7.20 (d, 2H, ³J_H-6.91-6.84 (m, 2H, C₆H₄CH₂CH₂CH(O)C₆H₄CH₃), 5.04 (m, 1H, C₆H₄CH₂CH₂CH(O)C₆H₄CH₃), $C_6H_4CH_2CH_2CH(O)C_6H_4CH_3),$ 3.05 - 2.97(m. 1H. 2.84 - 2.78(m, 1H. C₆H₄CH₂CH₂CH(O)C₆H₄CH₃), 2.40 (s, 3H, C₆H₄CH₂CH₂CH(O)C₆H₄CH₃), 2.24-2.19 (m, 1H, $C_6H_4CH_2C\underline{H}_2CH(O)C_6H_4CH_3)$, 2.16-2.06 (m, 1H, $C_6H_4CH_2C\underline{H}_2CH(O)C_6H_4CH_3)$. $^{13}C{^{1}H}$ NMR (CDCl₃, 400 MHz, 25 °C): δ ppm, 155.2, 138.8, 137.2, 129.4, 129.1, 127.3, 125.9, 121.6, 120.2, 96.2, 77.5, 30.0, 25.2, 21.2. GCMS (ESI): $[M]^+ m/z = 224$. Anal. Calcd. for C₁₆H₁₆O: C, 85.68; H, 7.19; Found: C, 85.41; H, 6.35 %.

2-(2-Methoxyphenyl)chroman (17)⁵

Colorless solid [0.0214 g, 14 % isolated yield (**1c**); 0.0197 g, 13 % isolated yield (**2c**)] ¹H NMR (CDCl₃, 400 MHz, 25 °C): δ 7.53 (d, 1H, ³*J*_{H-H} = 8 Hz, C₆H₄CH₂CH₂CH(O)C₆*H*₄OCH₃), 7.31 (t, 1H, ³*J*_{H-H} = 8 Hz, C₆H₄CH₂CH₂CH(O)C₆*H*₄OCH₃), 7.17-7.11 (m, 2H, C₆*H*₄CH₂CH₂CH(O)C₆*H*₄OCH₃), 7.03 (t, 1H, ³*J*_{H-H} = 8 Hz, C₆H₄CH₂CH₂CH(O)C₆*H*₄OCH₃), S16 6.96-6.88 (m, 3H, $C_6H_4CH_2CH_2CH(O)C_6H_4OCH_3$), 5.48 (d, 1H, ${}^3J_{H-H} = 10$ Hz, $C_6H_4CH_2CH_2CH_2CH_2(O)C_6H_4OCH_3$), 3.87 (s, 3H, $C_6H_4CH_2CH_2CH(O)C_6H_4OCH_3$), 3.07–2.99 (m, 1H, $C_6H_4CH_2CH_2CH_2CH(O)C_6H_4OCH_3$), 2.82–2.76 (m, 1H, $C_6H_4CH_2CH_2CH(O)C_6H_4OCH_3$), 2.30–2.25 (m, 1H, $C_6H_4CH_2CH_2CH(O)C_6H_4OCH_3$), 2.03–1.93 (m, 1H, $C_6H_4CH_2CH_2CH(O)C_6H_4OCH_3$), 2.03–1.93 (m, 1H, $C_6H_4CH_2CH_2CH(O)C_6H_4OCH_3$), 13C{¹H} NMR (CDCl₃, 100 MHz, 25 °C): δ ppm, 155.9, 155.5, 130.3, 129.6, 128.5, 127.2, 126.5, 122.3, 120.8, 120.1, 116.9, 110.4, 72.4, 55.4, 28.6, 25.3. GCMS (ESI): [M]⁺ m/z = 240. Anal. Calcd. for $C_{16}H_{14}O_2$: C, 79.97; H, 6.71; Found: C, 79.21; H, 6.47 %.

Figure S1. ¹H NMR spectrum of 1-Mesityl imidazole in CDCl₃.

Figure S2. Expanded ¹H NMR spectrum of 1-Mesityl imidazole in CDCl₃.

PG-APP-07-122-1-13C

Current NAME EXPNO PROCNO	Data Farameters PG-APP-07-122- 12 1	1-13C	25.111 25.111 25.111 25.111 21.011		71.45 76.94	11.12
F2 - Acc Date Time INSTRUM PROBHD PULPEOG TD SOLVENT NS SOLVENT NS SWH PIDRES AQ DB TE DI DI TE DI I TD0	pulsition Parame 20160721 19.35 5 mm PABBO BB/ 2003 65536 CDC13 112 29761.904 0.454131 1.010048 197.27 16.800 6.50 296.4 1.0000000 0.03000000 1	Hz Hz Hz sec usec usec usec k k sec sec			N	
SPO1 NUC1 P1 PLW1	CHANNEL f1 === 125.7703637 13C 8.90 103.00000000	MHz UBEC W				
SP02 NUC2 CPDPRG(1 PCPD2 PLW2 PLW12 PLW13	CHANNEL 12 500.1320005 1H Waltric 80.00 13.0000000 0.34327999 0.17267001	MHz usec W W				
F2 - Pro SF WDW SSB LB GB PC	00000000000000000000000000000000000000	ers MHI HI		1		

Figure S3. ¹³C{¹H} NMR spectrum of 1-Mesityl imidazole in CDCl₃.

Figure S4. Expanded ¹³C{¹H} NMR spectrum of 1-Mesityl imidazole in CDCl₃.

Figure S5. ¹H NMR spectrum of 2-chloro-*N*-(2,6-Me₂-phenyl)acetamide in CDCl₃.

Figure S6. Expanded ¹H NMR spectrum of 2-chloro-*N*-(2,6-Me₂-phenyl)acetamide in CDCl₃.

PG-APP-09-209-1-13C

Figure S7. ¹³C{¹H} NMR spectrum of 2-chloro-*N*-(2,6-Me₂-phenyl)acetamide in CDCl₃.

Figure S8. Expanded ¹³C{¹H} NMR spectrum of 2-chloro-*N*-(2,6-Me₂-phenyl)acetamide in CDCl₃.

Figure S9. ¹H NMR spectrum of 1a in CDCl₃.

Figure S10. Expanded ¹H NMR spectrum of 1a in CDCl₃.

NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT NS SOLVENT NS SWH FIDRES AQ RG DW DE TE D1 D11 TD0	PG-APP-09-217-1-13C 9 1 20171213 12.18 spect 5 mm PABBO BB- zqpq30 65536 CDC13 200 0 26041.666 Hz 1.2583412 sec 2050 19.200 usec 6.50 usec 296.2 K 1.0000000 sec 0.03000000 sec 1	163.69	CIO	22 77.52 76.88		$\overbrace{17,48}^{21.48}$
NUC1 P1 PL1 PL1W SF01	CHANNEL f1 13C 8.50 usec -2.00 dB 56.53121948 W 100.6238364 MHz		(1 a)	1		2
CPDPRG2 NUC2 PCPD2 PL12 PL13 PL2W PL12W PL12W PL13W SF02 SF WDW SSF02 SF WDW SSB LB GB PC	CHANNEL f2 waltz16 1H 80.00 usec -1.00 dB 13.69 dB 14.50 dB 10.56200695 W 0.35871249 W 0.29767781 W 400.1316005 MHz 32768 100.6127649 MHz EM 0 1.00 Hz 0 1.40					
210	200 190 180 17	0 160	150 140 130 120 110 100	90 80 70	60 50 40	30 20 10 ppm

Figure S11. ${}^{13}C{}^{1}H$ NMR spectrum of 1a in CDCl₃.

Figure S12. Expanded ${}^{13}C{}^{1}H$ NMR spectrum of 1a in CDCl₃.

Figure S13. IR spectrum of 1a in KBr.

Figure S14. High Resolution Mass Spectrometry (HRMS) data of 1a.

Page: 1 Samp	Eager 300 ble: PG-APP-09-217-2 (PG-2	Report	CIO H
Method Name Method File Chromatogram	: PGAPP10012018 : D:\CHNS2018\PGAPP10012 : PG-APP-09-217-2	018.mth	(1a)
Operator ID Analysed Sample ID Analysis Type	: Prakash : 02/19/2018 18:09 : PG-APP-09-217-2 (# 30) : UnkNown (Area)	Company Name : Printed : Instrument N. : Sample weight :	C.E. Instruments 1/26/2019 03:08 Instrument #1 1.257

Calib. method : using 'K Factors'

!!! Warning missing one or more peaks.

Element Name	8	Ret.Time	Area	BC	Area ratio	K factor
1	0.0000	2	18439	FU		0.0000
Nitrogen	10.8331	41	151800	FU	16.614450	.107234E+07
Carbon	68.3967	63	2522079	FU	1.00000	.262772E+07
Hydrogen	6.7151	181	600547	FU	4.199636	.660576E+07
Totals	\$5.9449		3292865			

Figure S15. Elemental analysis data of 1a.

PG-ST-01-181-01	7.620		4.942	
Current Data Parameters NAME PG-ST-01-181-01 EXPNO 1 PROCNO 1				
F2 - Acquisition Parameters Date20210120 Time7.20 INSTRUMSpect PROBHD_5 mm PABBO BB- PULPROG230 TD54274 SOLVENTCDC13 NS 6 DS0 SWH 8223.685 Hz FIDRES0.151522 Hz AQ 3.2998593 sec RG161 DW60.800 usec DE650 usec TE297.5 K D11.00000000 sec TD01			(1b)	
P1 11, 12, 73 User PL1 -1.00 00 PL1W 10.56200695 W SF01 400.1324710 MHz F2 - Processing parameters SI SI 32768 SF 400.1300095 WDW EM SSB 0 LB 0.30 Hz 0 PC 1.00				
 	8 6 1-00 1-00 1-00	7 6 7 85 85 1 85 1 85 1		 لىــــــ

Figure S16. ¹H NMR spectrum of 1b in CDCl₃.

Figure S17. Expanded ¹H NMR spectrum of 1b in CDCl3.

Figure S18. ¹³C{¹H} NMR spectrum of 1b in CDCl₃.

Figure S19. IR spectrum of 1b in KBr.
SP18022016 varioMICRO CHNS serial number: 15154051

Graphic report

No.	Weight [mg]	Name	Method	N Area	C Area	H Area	N [%]	C [%]	н (%)	Date Time	Info
19	1.4030 PG-ST-01-205-01-1		2mgChem80s	8 047	23 159	7 958	9.23	58.24	5.165	21-09-2021 16:04	Su
				TC dete unit - 20000 - 18000 - 16000 - 14000 - 12000 - 10000 - 8000	ct. O2 ml/)	2 /min 100 90 80 70 60 50 40	L				
~	-	A		- 6000	-	30				(1b)	
				- 4000	- :	20					
-	$\sqrt{-1}$	+ 1 - 1		- 2000	-	10					
X	XX		* × -	- 0		D					
50 10	015020025	03003504004505005	5060065070	ō -2000	L.	10					
		[sec.]			0						

Figure S20. Elemental analysis data of 1b.

Figure S21. ¹H NMR spectrum of 1c in CDCl₃.

Figure S22. Expanded ¹H NMR spectrum of 1c in CDCl₃.

Figure S23. ${}^{13}C{}^{1}H$ NMR spectrum of 1c in CDCl₃.

Figure S24. Expanded ${}^{13}C{}^{1}H$ NMR spectrum of **1c** in CDCl₃.

Figure S25. IR spectrum of 1c in KBr.

Figure S26. High Resolution Mass Spectrometry (HRMS) data of 1c.

Document: SP-29-01-2021 (varioMICRO) from: 30-01-2021 03:34:43

SP18022016 varioMICRO CHNS serial number: 15154051

Graphic report

No.	Weight [mg]	Name	Method	N Area	C Area	H Area	S Area	N [%]	C [%]	H [%]	S [%]	Date	Time
21	1.4520	PG-ST-01-158-1	2mgChem80s	6 192	22 989	8 612	27	6.04	55.76	5.970	0.000	29-01-2	021 17:14

Rû∘

ö

(**1c**)

CI

S44

Figure S28. ORTEP of **1c** with thermal ellipsoids shown at the 50 % probability level. Hydrogen atoms were omitted for clarity. Selected bond lengths (Å) and angles (°): Ru(1)-C(1)2.087(5), Ru(1)-Cl(1) 2.4299(14), Ru(1)-N(3) 2.153(4), C(1)-N(1) 1.367(6), C(1)-N(2)1.366(6), C(14)-N(3) 1.330(7), C(1)-Ru(1)-Cl(1) 84.22(15), Cl(1)-Ru(1)-N(3) 87.64(12), N(3)-Ru(1)-C(1) 84.94(19), N(1)-C(1)-Ru(1) 134.6(4), N(2)-C(1)-Ru(1) 122.3(4), N(1)-C(1)-N(2) 103.0(4).

Figure S29. ¹H NMR spectrum of 1-(2,6-Me₂-phenyl)imidazole in CDCl₃.

Figure S30. Expanded ¹H NMR spectrum of 1-(2,6-Me₂-phenyl)imidazole in CDCl₃.

Current I NAME EXPNO PROCNO	Data Parameters PG-APP-09-210- 2 1	1-13C	137.42 135.93 135.93 129.78 129.09	119.99		77.45		17.56
P2 - Acqu Date_	isition Parame 20171207	ters	AV AR	2		Ψ		
INSTRUM	spect							
PROBHD	5 mm PABBO BB/							
PULPROG	zgpg30							
TD COLUTINE	65536 CDC13							
NG	150							
DB	0							
SWH	29761.904	Hz						
FIDRES	0.454131	Hz						
AQ	1.1010048	sec						
nca hW	16,800	usec						
DE	6.50	usec			\sim /			
TE	298.1	к			FT			
D1	1.00000000	sec						
D11	0.03000000	Bec						
TDO	1				\/			
	CHANNEL fl							
SFO1	125.7703637	MHz						
NUCL	13C							
P1	8.90	usec						
5PM1	103.00000000	n a Wich						
	CHANNEL f2					1		
SFO2	500.1320005	MHz						
NUC2	1H							
CPDPRG[2	waltz16							
PCPDZ	16 0000000	w						
PLW12	0.44556001	W						1
PLW13	0.22411001	W						
F2 - Proc	cessing paramet	ers						
51 67	125 7577600	MILS	30					
WDW	EM	PD-6						
SSB	0		P	- Q -				
LB	1.00	Hz						
GB	0							
PC	1.40							
and the states	an ad all a local different data and the state				والمادية والأرجاب والمراجع والاستعاد والمراجع والمراجع			and the second
	A				and the second se		and the state of the second	an and the set of Male on any other superstants in a sufficient set
210	500 TAO :	180 170 160 150	140 130	120	110 100 90	80 70 60	50 40 30 2	10 10 0 -10 ppm

Figure S31. ${}^{13}C{}^{1}H$ NMR spectrum of 1-(2,6-Me₂-phenyl)imidazole in CDCl₃.

Figure S32. Expanded ¹³C{¹H} NMR spectrum of 1-(2,6-Me₂-phenyl)imidazole in CDCl₃.

Figure S33. ¹H NMR spectrum of 2a in CDCl₃.

Figure S34. Expanded ¹H NMR spectrum of 2a in CDCl₃.

PG-APP-09-230-1-13C

Figure S35. ${}^{13}C{}^{1}H$ NMR spectrum of 2a in CDCl₃.

Figure S36. Expanded ${}^{13}C{}^{1}H$ NMR spectrum of 2a in CDCl₃.

Figure S37. IR spectrum of 2a in KBr.

Figure S38. High Resolution Mass Spectrometry (HRMS) data of 2a.

Page: 1 Samj	Eager 300 pla: PG-APP-09-230-2 (PG-4	Report APP-09-230-2)	
Method Name Method File	: PGAPP29012018R : D:\CHNS2018\PGAPP290120	018R.mth	(2a)
Operator ID Analysed Sample ID Analysis Type	: PG-APP-09-230-2 : Prakash : 01/29/2018 14:46 : PG-APP-09-230-2 (# 16) : UnkNown (Area)	Company Name Printed Instrument N. Sample weight	: C.E. Instruments : 2/22/2018 18:23 : Instrument #1 : .987

Calib. method : using 'K Factors'

!!! Warning missing one or more peaks.

Element Name	8	Ret.Time	Area	BC	Area ratio	K factor
1	0.0000	2	21525	FU		0.0000
2	0.0000	6	115783	FU		0.0000
Nitrogen	13.7310	41	138189	RS	12.522860	.101966E+07
Carbon	67.6290	64	1730515	RS	1.000000	.259254E+07
Hydrogen	5.8837	181	370805	RS	4.666914	.638521E+07
Totals	87.2437		2376817			

Figure S39. Elemental analysis data of 2a.

Figure S40. ¹H NMR spectrum of 2b in CDCl₃.

Figure S41. Expanded ¹H NMR spectrum of 2b in CDCl₃.

PG-APP-10-15-1-13C

Figure S42. ${}^{13}C{}^{1}H$ NMR spectrum of 2b in CDCl₃.

Figure S43. Expanded ${}^{13}C{}^{1}H$ NMR spectrum of 2b in CDCl₃.

Figure S44. IR spectrum of 2b in KBr.

DEPARTMENT OF CHEMISTRY, I.I.T.(B)

Figure S45. High Resolution Mass Spectrometry (HRMS) data of 2b.

SP18022016 varioMICRO CHNS serial number: 15154051

Graphic report

Figure S46. Elemental analysis data of 2b.

Figure S47. ORTEP of 2b with thermal ellipsoids shown at the 50 % probability level. Hydrogen atoms were omitted for clarity. Selected bond lengths (Å) and angles (°): Ag(1)-C(1)2.0813(17), Ag(1)-Cl(1) 2.3684(5), C(1)-N(1) 1.352(2), C(1)-N(2) 1.357(2), C(1)-Ag(1)-Cl(1) 168.09(5), N(1)-C(1)-N(2) 104.05(15), N(1)-C(1)-Ag(1) 129.13(13), N(2)-C(1)-Ag(1) 126.74(13).

Figure S48. ¹H NMR spectrum of 2c in CDCl₃.

Figure S49. Expanded ¹H NMR spectrum of 2c in CDCl₃.

PG-APP-10-53-1-13C

Figure S50. ¹³C{¹H} NMR spectrum of 2c in CDCl₃.

Figure S51. Expanded ${}^{13}C{}^{1}H$ NMR spectrum of 2c in CDCl₃.

Figure S52. IR spectrum of 2c in KBr.

Figure S53. High Resolution Mass Spectrometry (HRMS) data of 2c.

Figure S54. Elemental analysis data of 2c.

Figure S55. ORTEP of **2c** with thermal ellipsoids shown at the 50 % probability level. Hydrogen atoms and co-crystallized water molecules were omitted for clarity. Selected bond lengths (Å) and angles (°): Ru(1)–C(1) 2.052(4), Ru(1)–N(3) 2.110(3), Ru(1)–Cl(1) 2.3936(9), C(1)–N(1) 1.359(5), C(1)–N(2) 1.358(5), C(1)–Ru(1)–Cl(1) 89.28(10), C(1)–Ru(1)–N(3) 85.17(13), N(3)–Ru(1)–Cl(1) 84.85(8), N(2)–C(1)–Ru(1) 134.7(3), N(1)–C(1)–Ru(1) 121.1(3), N(1)–C(1)–N(2) 104.2(3).

Figure S56. ESI-MS data of the benzaldehyde bound Ru–H specie (**F**) detected in the reaction mixture of 1:1:1 ratio of benzyl alcohol:1-phenylethan-1-ol:NaO*i*Pr 0.1 mmol, 1 mol % of (**1c**), 2.0 mL of toluene at 110 °C for 1 hour.

Figure S57. ¹H NMR spectrum of the ruthenium hydride specie (**F**) (-8.15 ppm) detected in the reaction mixture of 1:1:1 ratio of benzyl alcohol:1-phenylethanol:KOH 0.1 mmol, 1 mol % of (**1c**), 0.5 mL of C₆D₆ at 90 °C for 30 mins.

Figure S58. ¹H NMR spectrum of the ruthenium hydride specie (**F**) (-8.15 ppm) detected in the reaction mixture of 1:1 ratio of benzyl alcohol:KOH 0.1 mmol, 1 mol % of (**1c**), 0.5 mL of C₆D₆ at 90 °C for 30 mins.

Figure S59. ¹H NMR spectrum of the ruthenium hydride specie (**F**) (-7.06 ppm) detected in the reaction mixture of 1:1 ratio of benzyl alcohol:NaO-*i*-Pr 0.1 mmol, 1 mol % of (**1c**), 0.5 mL of C₆D₆ at 90 °C for 30 mins.

Figure S60. ¹H NMR spectrum of the ruthenium hydride specie (**F'**) (-6.99 ppm) detected in the reaction mixture of 1:1 ratio of benzyl alcohol: KOH 0.1 mmol, 1 mol % of (**2c**), 0.5 mL of C_6D_6 at 90 °C for 30 mins.

Figure S61. ¹H NMR spectrum of the ruthenium hydride specie (**F'**) (-6.93 ppm) detected in the reaction mixture of 1:1 ratio of benzyl alcohol:NaO-*i*-Pr 0.1 mmol, 1 mol % of (**2c**), 0.5 mL of C₆D₆ at 90 °C for 30 mins.

Figure S62. ¹H NMR spectrum of (3) in CDCl₃.

Figure S63. Expanded ¹H NMR spectrum of (3) in CDCl₃.

PG-APP-11-149-2-13C

Figure S64. ${}^{13}C{}^{1}H$ NMR spectrum of (3) in CDCl₃.

Figure S65. Expanded ${}^{13}C{}^{1}H$ NMR spectrum of (3) in CDCl₃.

Figure S66. GCMS trace in EtOAc of (3) showing the M^+ peak at m/z 212.

	Eage	r 300	Report		ŎН		
Page: 1 Samp	le: PG-APP-11-150)-2-2 (PG-	APP-11-150	-2-2		\sim	
Method Name	: PGAPP21112018				Phí >	∕ `Ph	
Method File	thod File : D:\CHNS2018\PGAPP21112010 -++				(3)		
Chromatogram	: PG-APP-11-150-2	-2	Lo.mcn		(-	-)	
Operator ID	: Prakash		Company Na		C. P. T		
Analysed	: 11/21/2018 22	27	Drinted		11/22/2010	nents	
Sample ID	: PG-APP-11-150-2	2-2 (# 28)	rinted	1	11/23/2018	11:01	
Analysis Type	: UnkNown (Area)	1	Instrument Sample weig	N. : ht :	Instrument	#1	
Calib. method	: using 'K Factor	cs'					
<pre>!!! Warning mi</pre>	ssing one or more	peaks.					
Element Name	*	Ret.Time	Area	BC	Area ratio	K factor	
1	0.0000						
Carbon	94.1602	6	137871	RS	57 595 595	0.0000	
Hydrogen	7 4005	62	2509913	RS	1.000000	.265065E+07	
Totals	7.4285	184	532988	RS	4.709136	.637770E+07	
	91.5978		3180772				

Figure S67. Elemental analysis data of (3).

PG-APP-11-150-1-1H

Figure S68. ¹H NMR spectrum of (3') in CDCl₃.

Figure S69. Expanded ¹H NMR spectrum of (3') in CDCl₃.

PG-APP-11-150-1-13C

Figure S70. ${}^{13}C{}^{1}H$ NMR spectrum of (3') in CDCl₃.

Figure S71. Expanded ${}^{13}C{}^{1}H$ NMR spectrum of (3') in CDCl₃.

Figure S72. GCMS trace in EtOAc of (3') showing the M^+ peak at m/z 210.

Figure S73. ¹H NMR spectrum of (4) in CDCl₃.

Figure S74. Expanded ¹H NMR spectrum of (4) in CDCl₃.

PG-APP-12-13-1-13C

Figure S75. ${}^{13}C{}^{1}H$ NMR spectrum of (4) in CDCl₃.

PG-APP-12-13-1-13C

Figure S76. Expanded ${}^{13}C{}^{1}H$ NMR spectrum of (4) in CDCl₃.

```
File :F:\GCMSDATA2019\May 2019\PG-APP-12-13-4.D
Operator : PG
Acquired : 28 May 2019 17:55 using AcqMethod COMMONMETHOD-2018.M
Instrument : GCMS
Sample Name: PG-APP-12-13-4
Misc Info :
Vial Number: 3
```


Figure S77. GCMS trace in EtOAc of (4) showing the M^+ peak at m/z 242.


```
Calib. method : using 'K Factors'
```

!!! Warning missing one or more peaks.

Element Name	8	Ret.Time	Area	BC	Area ratio	K factor
1	0.0000	6	103472	RS		0.0000
Carbon	78.9676	64	1664418	RS	1.000000	.267139E+07
Hydrogen	7.0210	184	378670	RS	4.395432	.683575E+07
Totals	85.9886		2146560			

Figure S78. Elemental analysis data of (4).

Figure S79. ¹H NMR spectrum of (5) in CDCl₃.

Figure S80. Expanded ¹H NMR spectrum of (5) in CDCl₃.

PG-APP-11-208-2-13C

Figure S81. ${}^{13}C{}^{1}H$ NMR spectrum of (5) in CDCl₃.

```
File :F:\GCMS-DATA-2021\APRIL 2021\PG-3RD-4-61-1R.D
Operator : JS
Acquired : 15 Apr 2021 14:23 using AcqMethod COMMONMETHOD-2020.M
Instrument : GCMS
Sample Name: FG-SRD-4-61-1R
Misc Info :
Vial Number: 3
```


Figure S82. GCMS trace in EtOAc of (5) showing the M^+ peak at m/z 218.

Figure S83. Elemental analysis data of (5).

Figure S84. ¹H NMR spectrum of (6) in CDCl₃.

PG-APP-11-210-1-1H

Figure S85. Expanded ¹H NMR spectrum of (6) in CDCl₃.

Figure S86. ${}^{13}C{}^{1}H$ NMR spectrum of (6) in CDCl₃.

```
File :F:\GCMSDATA2019\MAR 2019\PG-APP-11-210-28.D
Operator : APP
Acquired : 13 Mar 2019 23:00 using AcqMethod COMMONMETHOD_2018.M
Instrument : GCMS
Sample Name: PG-APP-11-210-28
Misc Info :
Vial Number: 1
```


Figure S87. GCMS trace in EtOAc of (6) showing the M^+ peak at m/z 202.

Page: 1 Sam	Eager 30() Report	OH
	ple: PG-APP-11-210-5 (PG-	APP-11-210-5)	OH
Method Name Method File Chromatogram	: PGAPP300519 : D:\CHNS2019\PGAPP30051 : PG-APP-11-210-5	9.mth	(6)
Operator ID	: Prakash	Company Name	: C.E. Instruments
Analysed	: 05/30/2019 17:32	Printed	: 5/30/2019 23:00
Sample ID	: PG-APP-11-210-5 (# 35)	Instrument N.	: Instrument #1
Analysis Type	: UnkNown (Area)	Sample weight	: 1.462

```
Calib. method : using 'K Factors'
```

!!! Warning missing one or more peaks.

Element Name	¥	Ret.Time	Area	BC	Area ratio	K factor
1 2 Carbon	0.0000 0.0000 77.7111 7.3492 85.0603	2 6 63	21547 123910 3035056 734473 3914986	FU FU RS RS	1.000000 4.132291	0.0000 0.0000 .267139E+07 .683575E+07
Totals		187				

45

Figure S88. Elemental analysis data of (6).

PG-APP-11-209-1-1H

Figure S89. ¹H NMR spectrum of (7) in CDCl₃.

Figure S90. Expanded ¹H NMR spectrum of (7) in CDCl₃.

PG-APP-11-209-1-13C

Figure S91. ${}^{13}C{}^{1}H$ NMR spectrum of (7) in CDCl₃.

Figure S92. GCMS trace in EtOAc of (7) showing the M^+ peak at m/z 178.

!!! Warning missing one or more peaks.

Element Name	8	Ret.Time	Area	BC	Area ratio	K factor
1	0.0000	2	141541	RS		0.0000
Nitrogen	6.7411	48	193184	FU	10.811430	.103544E+07
Carbon	80.0470	64	2088598	FU	1.000000	.265769E+07
Hydrogen	10.0655	184	646869	RS	3.228780	.656444E+07
Totals	96.8536		3070192			

Figure S93. Elemental analysis data of (7).

Figure S94. ¹H NMR spectrum of (8) in CDCl₃.

Figure S95. Expanded ¹H NMR spectrum of (8) in CDCl₃.

PG-APP-11-230-1-13C

Current NAME EXPNO PROCNO	Data Parameters PG-APP-11-230-1-13 2 1	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1128.63 128.63 128.63 128.63 128.63 128.63 128.63 126.49 126.49	-125.27	-77.45 -77.19	-76.94 -70.14			-39.62	-32.47	-19.07	
F2 - Acq Date Time Time PROBHD PULPROG TD SOLVENT NS SWH FIDRES AQ RG DW DE TE D1	quisition Parameters 20190416 8.43 spect 5 mm PABBO BB/ 2gpg30 65536 CDC13 160 0 29761.904 Hz 0.454131 Hz 1.1010048 sec 197.27 16.800 use 6.50 use 298.4 K 1.00000000 sec	: : :c	OH		\rightarrow				I	I	I	
D11 TD0 SF01 NUC1 P1 PLW1	0.03000000 sec 1 = CHANNEL f1 ======= 125.7703637 MHz 13C 8.90 use 103.00000000 W	:= : :c	(8)									
SF02 NUC2 CPDPRG[2 PCPD2 PLW2 PLW12 PLW13	CHANNEL f2 ====== 500.1320005 MHz 1H 2 waltz16 80.00 use 16.0000000 W 0.44556001 W 0.22411001 W											
F2 - Pro SI SF WDW SSB LB GB PC	Ocessing parameters 32768 125.7577681 MHz 0 1.00 Hz 0 1.40	: 		ten bad with generative statement			na film status and an an	in water and a single				
20	0 190 180 1	170 160 150	140 130 120	110 100	90 80	70	60	50 4	10 10	30	20	ppm

Figure S96. ${}^{13}C{}^{1}H$ NMR spectrum of (8) in CDCl₃.

Figure S97. Expanded ${}^{13}C{}^{1}H$ NMR spectrum of (8) in CDCl₃.

```
File :F:\GCMSDATA2019\APR2019\PG-APP-11-230-29.D
Operator : APP
Acquired : 15 Apr 2019 20:34 using AcqMethod COMMONMETHOD_2018.M
Instrument : GCMS
Sample Name: PG-APP-11-230-29
Misc Info :
Vial Number: 5
```


Figure S98. GCMS trace in EtOAc of (8) showing the M^+ peak at m/z 226.

Figure S99. Elemental analysis data of (8).

PG-APP-11-233-3-1H

Figure S100. ¹H NMR spectrum of (9) in CDCl₃.

PG-APP-11-233-3-1H

Figure S101. Expanded ¹H NMR spectrum of (9) in CDCl₃.

PG-ARP-11-233-3-13C

Figure S102. ${}^{13}C{}^{1}H$ NMR spectrum of (9) in CDCl₃.

PG-ARP-11-233-3-13C

Figure S103. Expanded ${}^{13}C{}^{1}H$ NMR spectrum of (9) in CDCl₃.

```
File :F:\GCMSDATA2019\APR2019\PG-APP-11-235-3.D
Operator : APP
Acquired : 17 Apr 2019 16:43 using AcqMethod COMMONMETHOD_2018.M
Instrument : GCMS
Sample Name: PG-APP-11-235-3
Misc Info :
Vial Number: 1
```


Figure S104. GCMS trace in EtOAc of (9) showing the M^+ peak at m/z 226.

!!! Warning missing one or more peaks.

Element Name	8	Ret.Time	Area	BC	Area ratio	K factor
1	0.0000	2	134852	RS		0.0000
Carbon	84.8281	63	1981027	RS	1.000000	.266592E+07
Hydrogen	7.8253	184	409480	RS	4.837908	.597347E+07
Totals	92.6534		2525359			

Figure S105. Elemental analysis data of (9).

Figure S106. ¹H NMR spectrum of (10) in CDCl₃.

Figure S107. Expanded ¹H NMR spectrum of (10) in CDCl₃.

PG-APP-11-238-1-13C

Figure S108. ${}^{13}C{}^{1}H$ NMR spectrum of (10) in CDCl₃.

PG-APP-11-238-1-13C

Figure S109. Expanded ${}^{13}C{}^{1}H$ NMR spectrum of (10) in CDCl₃.

```
File :F:\GCMSDATA2019\APR2019\PG-APP-11-238-4.D
Operator : APP
Acquired : 22 Apr 2019 20:09 using AcqMethod COMMONMETHOD_2018.M
Instrument : GCMS
Sample Name: PG-APP-11-238-4
Misc Info :
Vial Number: 2
```


Figure S110. GCMS trace in EtOAc of (10) showing the M^+ peak at m/z 254.

!!! Warning missing one or more peaks.

Element Name	8	Ret.Time	Area	BC	Area ratio	K factor
1	0.0000	2	134675	RS		0.0000
Carbon	85.0741	63	2286149	RS	1.000000	.266592E+07
Hydrogen	8.1537	184	490957	RS	4.656515	.597347E+07
Totals	93.2279	65	2911781			

Figure S111. Elemental analysis data of (10).

PG-APP-12-11-2-1H

Figure S112. ¹H NMR spectrum of (11) in CDCl₃.

Figure S113. Expanded ¹H NMR spectrum of (11) in CDCl₃.

PG-APP-12-11-2-13C

Figure S114. ${}^{13}C{}^{1}H$ NMR spectrum of (11) in CDCl₃.

PG-APP-12-11-2-13C

Figure S115. Expanded ${}^{13}C{}^{1}H$ NMR spectrum of (11) in CDCl₃.

```
File :F:\GCMSDATA2019\May 2019\PG-APP-12-11-31.D
Operator : APP
Acquired : 20 May 2019 22:57 using AcqMethod COMMONMETHOD-2016.M
Instrument : GCMS
Sample Name: PG-APP-12-11-31
Misc Info :
Vial Number: 1
```


Figure S116. GCMS trace in EtOAc of (11) showing the M^+ peak at m/z 268.

!!! Warning missing one or more peaks.

Viewant Namo	8	Ret.Time	Area	BC	Area ratio	K factor
Element Name						
	0.0000	6	60133	RS		0.0000
Carbon	84.3312	63	1706383	RS	1.000000	.2665926+07
Hydrogen Totals	8.2963	184	376143 2142659	RS	4.536527	.59/34/240/

and the second second second

Figure S117. Elemental analysis data of (11).

PG-APP-12-03-2-1H

Figure S118. ¹H NMR spectrum of (12) in CDCl₃.

PG-APP-12-03-2-1H

Figure S119. Expanded ¹H NMR spectrum of (12) in CDCl₃.

PG-APP-12-10-1-13C

Current Data Parameters NAME PG-APP-12-10-1-13C EXPNO 2 PROCNO 1	-159.31		128.56 128.56 128.26 128.26 128.26 128.39 121.24	—111.42 —102.91	77.45	-76.94 -67.69		—37.15 —31.79	
F2 Acquisition Parameters Date 20190505 Time 9.41 INSTRUM spect PROBHD 5 mm PABDO BB/ PULPROG Zgpg30 TD TD 65536 SOLVENT CDC13 NS 200 DS 0 SWH 29761.904 FIDRES 0.454131 AQ 1.010048 DS 0 EG 197.27 DW 16.800 DE 6.50 TE 298.4 D1 1.0000000 Sec TD0	с с	1		H	¥				
CHANNEL fl SF01 125.7703637 NUC1 13C Pl 8.90 PLW1 103.00000000 W	= c		(12	2)					
CHANNEL f2 SFO2 500.1320005 MHz NUC2 1H CPDPRG[2 waltz16 PCPD2 80.00 user PLW2 16.0000000 W PLW12 0.44556001 W PLW13 0.22411001 W	= c								
F2 - Processing parameters SI 32768 SF 125.7577686 MHz WDW EM SSB 0 LB 1.00 Hz GB 0 PC 1.40							ted and the school and a school and		der angehölter mit an ber eine soll an
200 190 180	170 160	150 140	130 120	110 100	90 80	70	60 50	40 30	20 ppm

Figure S120. ${}^{13}C{}^{1}H$ NMR spectrum of (12) in CDCl₃.

PG-APP-12-10-1-13C

Figure S121. Expanded ${}^{13}C{}^{1}H$ NMR spectrum of (12) in CDCl₃.

```
File :F:\GCMSDATA2019\May 2019\PG-APP-12-10-2.D
Operator : APP
Acquired : 5 May 2019 11:26 using AcqMethod COMMONMETHOD_2018.M
Instrument : GCMS
Sample Name: PG-APP-12-10-2
Misc Info :
Vial Number: 3
```


Figure S122. GCMS trace in EtOAc of (12) showing the M^+ peak at m/z 252.

!!! Warning missing one or more peaks.

Element Name	8	Ret.Time	Area	BC	Area ratio	K factor
1 .	0.0000	2	30781	FU		0.0000
2	0.0000	6	114524	FU		0.0000
Carbon	81.1336	63	2401468	RS	1.000000	.267139E+07
Hydrogen	5.8671	184	444371	RS	5,404196	.683575E+07
Totals	87.0006		2991144			

Figure S123. Elemental analysis data of (12).

Figure S124. An overlay of the formation of (**3**) and (**3**') as a function of time in the reaction of 1-phenylethanol and benzyl alcohol as catalyzed by the Ru–NHC complex (**1c**).

Figure S125. An overlay of the formation of (**3**) and (**3'**) as a function of time in the reaction of 1-phenylethanol and benzyl alcohol as catalyzed by the Ru–NHC complex (**2c**).

Figure S126. An overlay of the formation of (**3**) and (**3'**) as a function of time in the reaction of 1-phenylethanol and benzyl alcohol as catalyzed by the Ru–NHC complex (**2c**).

Figure S127. ¹H NMR spectrum of (13) in CDCl₃.

Figure S128. Expanded ¹H NMR spectrum of (13) in CDCl₃.

Figure S129. ${}^{13}C{}^{1}H$ NMR spectrum of (13) in CDCl₃.

PG-ST-01-200-01-13C

Figure S130. Expanded ${}^{13}C{}^{1}H$ NMR spectrum of (13) in CDCl₃.

Figure S131. GCMS trace in EtOAc of (13) showing the M^+ peak at m/z 210.

Figure S132. Elemental analysis data of (13).

PG-ST-01-219-1-1H

Figure S133. ¹H NMR spectrum of (14) in CDCl₃.

Figure S134. Expanded ¹H NMR spectrum of (14) in CDCl₃.

PG-ST-01-219-01-13C

Figure S135. ${}^{13}C{}^{1}H$ NMR spectrum of (14) in CDCl₃.

PG-ST-01-219-01-13C

ppm

Figure S136. Expanded ${}^{13}C{}^{1}H$ NMR spectrum of (14) in CDCl₃.

Figure S137. GCMS trace in EtOAc of (14) showing the M^+ peak at m/z 260.

SP18022016 varioMICRO CHNS serial number: 15154051

Graphic report

Figure S138. Elemental analysis data (14).

Ļ L L L. 1 1 5 LL L L L 7 J _

Figure S139. ¹H NMR spectrum of (15) in CDCl₃.

Figure S140. Expanded ¹H NMR spectrum of (15) in CDCl₃.

PG-ST-01-230-05-13C

Figure S141. ${}^{13}C{}^{1}H$ NMR spectrum of (15) in CDCl₃.

PG-ST-01-230-05-13C

Figure S142. Expanded ${}^{13}C{}^{1}H$ NMR spectrum of (15) in CDCl_{3.}

Figure S143. GCMS trace in EtOAc of (15) showing the M^+ peak at m/z 254.

Name: eassuperuser, Access: VarioMICRO administrator

02-04-2021 09:55:13

varioMICRO V4.0.1 (aeb1e0e)2015-10-12, CHNS Mode, Ser. No.: 15154051 Elementar Analysensysteme GmbH

Page 1 (of 1)

Figure S144. Elemental analysis data (15).

Figure S145. ¹H NMR spectrum of (16) in CDCl₃.

Figure S146. Expanded ¹H NMR spectrum of (16) in CDCl₃.

Figure S147. ${}^{13}C{}^{1}H$ NMR spectrum of (16) in CDCl₃.

Figure S148. Expanded ${}^{13}C{}^{1}H$ NMR spectrum of (16) in CDCl_{3.}

Figure S149. GCMS trace in EtOAc of (16) showing the M^+ peak at m/z 224.

varioMICRO V4.0.1 (aeb1e0e)2015-10-12, CHNS Mode, Ser. No.: 15154051 Elementar Analysensysteme GmbH

Page 1 (of 1)

Figure S150. Elemental analysis data (16).

Figure S151. ¹H NMR spectrum of (17) in CDCl₃.

Figure S152. Expanded ¹H NMR spectrum of (17) in CDCl₃.

J-SI-02-03-06-ISC					
	155.90	130.28 129.55 129.55 128.53 126.47 126.47 120.80 112.25 110.38 110.38	77.39 77.07 76.75 72.40	55.42	
Current Data Parameters NAME PG-ST-02-05-06-13C EXPNO 4 PROCNO 1					
F2 - Acquisition Parameters Date02210324 Time8.20 INSTRUMSpect PROBHD_5 PROBHD_5 PULPROGSgpq30 TD 65536 SOLVENTS54 DS 0 SWH 26041.666 FIDRESS0.397364 AQ 1.2582912 DG 1820 DW 19.200 DE 6.50 DE 6.50 DE 6.50 US 10.000000 SEC SEC					
TDO 1					
NOL1 13C P1 8.50 usec PL1 -2.00 dB PL1W 56.53121948 W SF01 100.6238364 MHz			(17)		
CHANNEL f2 CPDPRG[2 waltzl6 NUC2 1H PCPD2 80.00 PL2 -1.00 PL13 14.50 PL2 13.69 PL3 0.56200695 PL12W 0.35671249 PL13W 0.29767781 W SPO2					
F2 - Processing parameters SI 32768 SF 100.6127690 MHz WDW EM					
ISB 0 LA LB 1.00 Hz GB 0 PC 1.40	h				

Figure S153. ${}^{13}C{}^{1}H$ NMR spectrum of (17) in CDCl_{3.}

Figure S154. Expanded ${}^{13}C{}^{1}H$ NMR spectrum of (17) in CDCl₃.

Figure S155. GCMS trace in EtOAc of (17) showing the M^+ peak at m/z 240.

Name: eassuperuser, Access: VarioMICRO administrator

02-04-2021 09:57:19

varioMICRO V4.0.1 (aeb1e0e)2015-10-12, CHNS Mode, Ser. No.: 15154051 Elementar Analysensysteme GmbH Page 1 (of 1)

Figure S156. Elemental analysis data (17).

Scheme S1. One pot tandem β -alkylation reaction of secondary alcohol involving five sequential reactions.

Scheme S2. Proposed mechanism for the Ru–NHC (2c) catalyzed one pot tandem β -alkylation reaction for representative substrates namely 1-phenylethanol and benzyl alcohol.

compound	(1c)	(1 c')	(2b)	(2c)
Lattice	Monoclinic	Triclinic	Monoclinic	Triclinic
Formula	C ₃₂ H ₃₈ N ₃ ORuCl	C ₃₂ H ₃₈ N ₃ ORuCl	C ₁₇ H ₁₇ N ₃ AgCl	$C_{27}H_{31}N_3RuCl_2{\scriptstyle\bullet}2H_2O$
Formula weight	617.17	617.17	406.65	605.55
Space group	P121/n1	P-1	P121/n1	P-1
a/Å	9.0361(6)	8.0275(3)	9.8162(2)	8.2367(3)
b/Å	30.505(2)	13.1953(5)	16.0104(3)	9.1208(3)
c/Å	10.5031(6)	15.2588(6)	10.8039(2)	17.8719(5)
$\alpha/^{\circ}$	90.000	103.407(3)	90.000	93.836(2)
β/°	93.623(5)	104.358(3)	90.098(2)	93.825(2)
$\gamma/^{\circ}$	90.000	102.686(3)	90.000	97.623(3)
$V/Å^3$	2889.4(3)	1455.78(10)	1697.95(6)	1323.90(8)
Z	4	2	4	2
Temperature (K)	150(2)	150(2)	150(2)	150(2)
Radiation (λ,Å)	0.71073	0.71073	0.71073	0.71073
ρ (calcd.), g cm ⁻³	1.419	1.408	1.591	1.519
μ (Mo K α), mm ⁻¹	0.665	0.660	1.343	0.824
θ max, deg.	25.00	25.00	31.101	24.999
No. Of data	3630	4556	4147	3922
No. Of parameters	351	351	201	327
R_1	0.0617	0.0554	0.0268	0.0450
wR_2	0.1500	0.1422	0.0634	0.1094
GOF	1.061	1.068	1.054	1.054

Table S1. X-ray crystallographic data for Ag-NHC complex (2b), Ru-NHC complexes (1c), (1c') and 2c.

S. No.	complex	d(Ru–C _{carbene})/ (Å)	<i>d</i> (Ru−N)/ (Å)	d(Ru−Cl)/ (Å)	d(Ru–C _{centroid})/ (Å)	reference
1.	N Ru-Cl N O	2.0172(19)	2.1074(16)	2.4404(7)	1.706	[6]
2.	N Ru-CI	2.033(5)	2.125(5)	2.4256(14)	1.712	[6]
3.	N RU-CI N N O	2.019(3)	2.1074(16)	2.4325(8)	1.719	[6]
4.	$ \begin{array}{c} $	2.087(5)	2.153(4)	2.4299(14)	1.736	present work

Table S2. A comparison of the metrical data of the neutral (amido-N functionalized NHC)Ru(*p*-cymene)Cl type complexes known in the literature is shown.

S. No.	complex	$d(\text{Ag-C}_{carbene})/(\text{\AA})$	<i>d</i> (Ag–X) (X=Br, Cl)/ (Å)	reference
1.	i-Pr N N i-Pr Ag N Br	2.075(7)	2.421(1)	[7]
2.	N N N Br N N	2.07(2)	2.373(4) and 2.952(4)	[7]
3.	N Ag CI Ag N N CI N	2.0762(19)	2.0763(19) and 2.9916(6)	[7]
4.	N Ag Cl Ag N N - Ag Cl Ag N N - Fe	2.097(2)	2.4119(8) and 2.830(1)	[7]
5.	(2b)	2.0813(17)	2.3684(5)	present work

Table S3. A comparison of the metrical data of the representative structurally characterized examples of neutral (unsubstituted picolyl functionalized NHC)AgCl and neutral (unsubstituted pyridyl functionalized NHC)AgCl type complexes known in the literature is shown.

S. No.	complex	d(Ru–C _{carbene})/ (Å)	d(Ru−N)/ (Å)	d(Ru−Cl)/ (Å)	$d(\operatorname{Ru-C}_{centroid})/(\operatorname{\AA})$	reference
1.	⊕ [PF ₆] ⊕ [PF ₆] ⊕ [PF ₆]	2.029(3)	2.098(3)	2.4615(7)	2.7214(15)	[8]
2.	N N N N N N N N N N N N N N N N N N N	2.0145(19)	2.1055(16)	2.4397(4)	1.7155(8)	[8]
3.	N N Ru-Cl N	2.033(2)	2.100(2)	2.246(2)	1.712	[9]
4.	⊕ [PF ₆]	2.009(2)	2.092(18)	2.401(6)	1.710(1)	[10]
5.	⊕ [PF ₆]	2.035(7)	2.095(6)	2.389(2)	1.710(3)	[11]
6.		2.023(5)	2.111(4)	2.448(1)	1.696(2)	[11]
7.	$(2c) \oplus Cl \oplus C$	2.052(4)	2.110(3)	2.3936(9)	1.704	present work

Table S4. A comparison of the metrical data of the representative structurally characterized examples of ionic (picolyl functionalized

 NHC)Ru(*p*-cymene)Cl type complexes known in the literature is shown.

Table S5. Base variation study for the Ru–NHC (**1c**) catalyzed one pot tandem β -alkylation reaction for two representative substrates namely 1-phenylethanol and benzyl alcohol^{*a*}.

(a). Reaction conditions: 1:1:1 ratio of 1°-alcohol:2°-alcohol:base 1.00 mmol, 1 mol % of (1c),
2.0 mL of toluene at 110 °C for time (h). (b). Isolated yields (%).
Table S6. Time variation study for the Ru–NHC (**1c/2c**) catalyzed one pot tandem β -alkylation reaction for two representative substrates namely 1-phenylethanol and benzyl alcohol^{*a*}.

yield^b

S.No	time (h)	OH Ph	Ph	Ph Ph		
		(3)	(3)		(3')	
		(1c)	(2c)	(1c)	(2c)	
1	0.5	18	12	15	5	
2	1	37	27	34	12	
3	2	51	35	33	14	
4	3	72	68	11	13	
5	4	61	46	19	22	
6	6	55	38	40	28	
7	12	1	6	64	32	
8	24	61	51	9	9	
9	48	63	50	5	7	
10	72	55	32	3	3	
11	96	46	28	> 5	3	
12	120	22	15	> 5	2	

(a). Reaction conditions: 1:1:1 ratio of 1°-alcohol:2°-alcohol:NaOiPr 1.00 mmol, 1 mol % of
(1c/2c), 2.0 mL of toluene at 110 °C for T hour. (b) Isolated yields (%).

Table S7. Selected results of blank, control and Hg drop experiments for the one pot tandem β -alkylation reaction for two representative substrates namely 1-phenylethanol and benzyl alcohol^{*a*}.

(a). Reaction conditions: 1:1:1 ratio of 1° -alcohol: 2° -alcohol:NaO*i*Pr 1.00 mmol, 1 mol % of (**1c**), 2.0 mL of toluene at 110 °C for 3 hours. (b). Isolated yields (%).

Table S8. Selected results of blank and control experiments for the one pot tandem β -alkylation reaction for two representative substrates namely 1-phenylethanol and benzyl alcohol^{*a*}.

(a). Reaction conditions: 1:1:1 ratio of 1° -alcohol: 2° -alcohol:NaOiPr 1.00 mmol, 1 mol % of (**1c**), 2.0 mL of toluene at 110 °C for 3 hours. (b). Isolated yields (%).

S. No.	2° alcohol	1° alcohol	product	Ru–NHC (1c)	Ru–NHC (2c)
	2 400101			yield ^b	yield ^b
13	OH	BrOH	(13)	17	10
14	OH	BrOH		36	28
15	O O	BrOH		18	15
16	OH	BrOH		12	11
17	OH O	BrOH		14	13

Table S9. Selected results for the Ru–NHC (1–2)c catalyzed one pot synthesis of flavan derivatives (13-17).

Reaction conditions: (*a*). Reaction conditions: 1:1:1 ratio of 1°-alcohol:2°-alcohol:base 1.00 mmol, 1 mol % of (1c/2c), 2.0 mL of toluene at 110 °C for 3 hours. (*a*). Reaction conditions: 20 mol % CuI, 20 mol % 2,2'-bipyridine, base 1.00 mmol, 1.0 mL of toluene at 110 °C for 24 hours. (*c*). Isolated yields (%).

References

1. Huang, P.-Q.; Chen, H., Ni-Catalyzed cross-coupling reactions of N-acylpyrrole-type amides with organoboron reagents. *Chem. Commun.* **2017**, *53*, 12584-12587.

2. Ren, X.; O'Hanlon, J. A.; Morris, M.; Robertson, J.; Wong, L. L., Synthesis of Imidazolidin-4-ones via a Cytochrome P450-Catalyzed Intramolecular C–H Amination. *ACS Catal.* **2016**, *6*, 6833-6837.

3. Njar, V. C. O., High-yield synthesis of novel imidazoles and triazoles from alcohols and phenols. *Synthesis* **2000**, 2019-2028.

4. Wang, Q.; Wu, K.; Yu, Z., Ruthenium(III)-Catalyzed β-Alkylation of Secondary Alcohols with Primary Alcohols. *Organometallics* **2016**, *35*, 1251-1256.

Shee, S.; Paul, B.; Panja, D.; Roy, B. C.; Chakrabarti, K.; Ganguli, K.; Das, A.; Das, G.
 K.; Kundu, S., Tandem Cross Coupling Reaction of Alcohols for Sustainable Synthesis of β Alkylated Secondary Alcohols and Flavan Derivatives. *Adv. Synth. Catal.* 2017, *359*, 3888-3893.

6. Kumar, S.; Narayanan, A.; Rao, M. N.; Shaikh, M. M.; Ghosh, P., Ruthenium complexes of chelating amido-functionalized N-heterocyclic carbene ligands: Synthesis, structure and DFT studies. *J. Chem. Sci.* **2011**, *123*, 791-798.

7. Tulloch, A. A. D.; Danopoulos, A. A.; Winston, S.; Kleinhenz, S.; Eastham, G., N-Functionalised heterocyclic carbene complexes of silver. *Journal of the Chemical Society, Dalton Trans.* **2000**, 4499-4506.

8. Smith, I. G.; Zgrabik, J. C.; Gutauskas, A. C.; Gray, D. L.; Domski, G. J., Synthesis, characterization, and catalytic behavior of mono- and bimetallic ruthenium(II) and iridium(III) complexes supported by pyridine-functionalized N-heterocyclic carbene ligands. *Inorg. Chem. Commun.* **2017**, *81*, 27-32.

9. Saha, S.; Kaur, M.; Singh, K.; Bera, J. K., Selective hydrogenation of nitriles to secondary amines catalyzed by a pyridyl-functionalized and alkenyl-tethered NHC-Ru(II) complex. *J. Organomet. Chem.* **2016**, *812*, 87-94.

10. Leigh, V.; Ghattas, W.; Lalrempuia, R.; Müller-Bunz, H.; Pryce, M. T.; Albrecht, M., Synthesis, Photo-, and Electrochemistry of Ruthenium Bis(bipyridine) Complexes Comprising a N-heterocyclic Carbene Ligand. *Inorg. Chem.* **2013**, *52*, 5395-5402.

11. Fernández, F. E.; Puerta, M. C.; Valerga, P., Ruthenium(II) Picolyl-NHC Complexes: Synthesis, Characterization, and Catalytic Activity in Amine N-alkylation and Transfer Hydrogenation Reactions. *Organometallics* **2012**, *31*, 6868-6879.