Supporting Information

Robust Ionic liquid@MOF composite as a versatile superprotonic conductor

Kiran Taksande,^{a, b} Effrosyni Gkaniatsou,^c Corine Simonnet-Jégat, ^c Carine Livage, ^c

Guillaume Maurin,^a Nathalie Steunou, ^c Sabine Devautour-Vinot,^a

^a ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France

^b Government of Maharashtra's, Ismail Yusuf College, Jogeshwari(E), Mumbai,

Maharashtra 411060, India

^c Institut Lavoisier de Versailles UMR CNRS 8180, Université de Versailles St

Quentin en Yvelines, Université Paris Saclay, Versailles, France

SEM-EDX	p 2
Elemental Analysis	p 3
Thermogravimetric analysis (TGA)	p 4
FT-IR spectroscopy	p 5
Impedance measurements	p 6
Water sorption isotherm	p 10
Additional impedance measurements	p11

SEM-EDX

Figure S1: SEM image of MIL-101(Cr)-SO₃H

Figure S2. (a and b) SEM images of EMIM@MIL-101-SO₃H and (c) XEDS spectrum of EMIM@MIL-101-SO₃H in the case of (b).

Elemental Analysis Table S1. EA results of MIL-101(Cr)-SO₃H and EMIM@MIL-101-SO₃H.

<i>MIL-101(Cr)-SO</i> ₃ <i>H</i>						
%exp (wt%) C 27.93 S 6.43		Weight ratio, $m(C)/m(S) = 4.34$ -SO ₃ H functionalization degree= 68.6 %				
EMIM@MIL-101-SO ₃ H before PC measurements						
%exp C N) (wt%) 34.7 9.6	Weight ratio, $m(C)/m(N) = 3.61$				
EMIM@MIL-101-SO3H after PC measurements recorded at 298K-473K / 0% RH						
C N	(wt%) 37.4 10.2	Weight ratio, $m(C)/m(N) = 3.66$				
EMIM@MIL-101-SO ₃ H after PC measurements recorded at 343K / 80% RH for 6 days						
%exp C N	o (wt%) 35.6 9.7	Weight ratio, $m(C)/m(N) = 3.67$				

Figure S3 TGA curve (wt %) of (a) bulk EMIMCl and (b) MIL-101(Cr)-SO₃H.

FT-IR spectroscopy

Figure S4: FT-IR spectra of (a) EMIMCl, (b) MIL-101(Cr)-SO₃H and (c) EMIM@MIL-101-SO₃H.

Table S2:	Main FT-IR	vibration	bands	of EMIMCl,	MIL-101	$(Cr)-SO_3H$	and EM	/IM@MI	L-
101-SO ₃ H	with the corre	esponding	assign	ment.					

MIL-101(Cr)-SO ₃ H	EMIMC1	EMIM@MIL-101-SO ₃ H	Assignment
	3151	3148	v(C-H)
	3083	3088	ν (C-H)
1628	1630	1628	$v(C-O)$ as $+ \delta(H-O-H)$
	1574	1568	Imidazole skeleton
1485		1479	v(C-O)s
	1448	1450	Imidazole skeleton
1403		1397	v(S=O) as
	1330		Imidazole skeleton
1178	1167	1166	v(S=O) s + Imidazole
			skeleton
1077		1077	v(S-O)
1026		1026	v(S-O)
840		840	v(Cr-O)
773		773	v(C-S)

Impedance measurements of the anhydrous EMIM@MIL-101-SO₃H

Figure S5: Nyquist plots of the impedance for the dehydrated EMIM@MIL-101-SO₃H powder recorded under 0% RH, at 473 K (a), 463 K (b), 453 K (c), 443 K (d), 433 K (e), 423 K (f), 413 K (g), 403 K (h), 393 K (i), 383 K (j), 373 K (k), 363 K (l), 353 K (m), 343 K (n), 333 K (o), 323 K (p), 313 K (q), 303 K (r), 293 K (s), 283 K (t), 273 K (u), 263 K (v) and 253 K (w).

Impedance measurements of the bulk EMIMCI

Figure S6: Nyquist plots of the impedance for the bulk EMIMCl recorded under 0% RH, at 323 K (a), 313 K (b), 303 K (c), 293 K (d), 283 K (e), 273 K (f), 263 K (g), 253 K (h), 243 K (i), 233 K (j), 223 K (k), 213 K (l), 203 K (m), 193 K (n), 183 K (o) and 173 K (p).

Figure S7: Nyquist plots of the impedance for the dehydrated MIL-101(Cr)-SO₃H recorded under 0% RH, at 393 K (1), 383 K (2), 373 K (3), 363 K (4), 353 K (5), 343 K (6), 333 K (7), 323 K (8), 313 K (9) and 303 K (10).

Impedance measurements of the hydrated EMIM@MIL-101-SO₃H for RH varying from 35 % to 80 %

Figure S8: Nyquist plots of the impedance for EMIM@ MIL-101-SO₃H recorded at 343 K (**a**) and 303 K (**b**) and for MIL-101(Cr)-SO₃H recorded at 343 K (**c**) for RH varying from 35% to 80%.

Figure S9: Humidity dependence of the conductivity for EMIM@MIL-101-SO₃H recorded at 303 K. The exponential line is a guide for the eyes.

Figure S10: Water sorption isotherm of EMIM@MIL-101-SO₃H recorded at 303 K. Full and empty squares refer to the adsorption and desorption branches, respectively.

Figure S11: Nyquist plots of the impedance for EMIM@MIL-101-SO₃H (**a**) and MIL-101(Cr)-SO₃H (**b**) recorded under 80% RH, for T varying from 343 K to 298 K.

Figure S12: Time dependence of the conductivity of EMIM@MIL-101-SO₃H recorded at 343 K under 80% RH.

	Anhydrous EMIM@MIL-101-SO ₃ H RH = 0		RH = 0%	(I = 0.044 cm, S = 0.3631 cm ²)				
Т/К	σ / S cm-1	Τ/Κ	σ / S cm $^{-1}$	Τ/Κ	σ / S cm-1	Τ/Κ	σ / S cm $^{-1}$	
473	1.6 x 10 ⁻³	463	7.2 x 10 ⁻⁴	453	4.0 x 10 ⁻⁴	443	3.0 x 10 ⁻⁴	
433	2.0 x 10 ⁻⁴	423	1.4 x 10 ⁻⁴	413 9.8 x 10 ⁻⁵		403	6.4 x 10 ⁻⁵	
393	4.1 x 10 ⁻⁵	383	2.4 x 10 ⁻⁵	373	1.4 x 10 ⁻⁵	363	7.4 x 10⁻ ⁶	
353	3.5 x 10⁻6	343	1.4 x 10 ⁻⁶	333	5.1 x 10 ⁻⁷	323	2.0 x 10 ⁻⁷	
313	6.6 x 10 ⁻⁸	303	1.5 x 10⁻ ⁸	293 2.9 x 10 ⁻⁹ 283		283	4.8 x 10 ⁻¹⁰	
273	6.0 x 10 ⁻¹¹	263	6.0 x 10 ⁻¹²	253	5.1 x 10 ⁻¹³	243	5.9 x 10 ⁻¹⁴	
	Bulk	EMIMCI	RH = 0%	(1 = 0.09	98 cm, S = 0.36	31 cm²)		
Т/К	σ / S cm-1	Т/К	σ / S cm $^{-1}$	Τ/Κ	σ / S cm-1	Τ/Κ	σ / S cm $^{-1}$	
323	3.0 x 10 ⁻³	313	2.1 x 10 ⁻³	303	1.2 x 10 ⁻³	293	7.9 x 10 ⁻⁴	
283	5.0 x 10 ⁻⁴	273	3.2 x 10 ⁻⁴	263	2.1 x 10 ⁻⁶	253	1.4 x 10 ⁻⁷	
243	2.8 x 10 ⁻⁸	233	2.5 x 10 ⁻⁸	223	2.8 x 10 ⁻⁸	213	5.5 x 10⁻ ⁸	
203	1.9 x 10 ⁻⁸	193	6.5 x 10 ⁻¹⁰	183	8.5 x 10 ⁻¹²			
			Hydrated EMI	M@MIL-10)1-SO₃H			
	T =	343 K	FC and 21		T = 298 K			
	(I =0.186 cm,	S = 0.12		DU / 0/	$(I = 0.148 \text{ cm}, S = 0.1256 \text{ cm}^2)$			
KH / %	σ / S cm ⁻¹	KH / %	σ / S cm ⁻¹	KH / %	σ / S cm ⁻¹	KH / %	σ / S cm ⁻¹	
80	1.4 x 10 ⁻¹	70	1.2 x 10 ⁻¹	80	3.2 x 10 ⁻²	70	2.3 x 10 ⁻²	
60	1.0 x 10 ⁻¹	50	8.4 x 10 ⁻²	60	1.4 x 10 ⁻²	50	9.0 x 10 ⁻³	
40	6.0 x 10 ⁻²	35	4.8 x 10 ⁻²	40	5.0 x 10 ⁻³	35	3.5 x 10 ⁻³	
	Hydrated MIL-	101(Cr)-:	SO₃H T = 34	43 K (I	=0.376 cm, S =	= 0.1256 d	c m ²)	
RH / %	σ / S cm-1	RH / %	σ / S cm-1	RH / %	σ / S cm-1	RH / %	σ / S cm-1	
80	5.6 x 10 ⁻³	70	5.4 x 10 ⁻³	60	5.0 x 10 ⁻³	50	4.2 x 10 ⁻³	
40	2.7 x 10 ⁻⁴							
	Hydrated EMII	M@MIL-	101-SO₃H RF	1 = 80%	(l = 0.270 cm	, S = 0.12	56 cm²)	
Т/К	σ / S cm-1	Τ/Κ	σ / S cm $^{-1}$	Τ/Κ	σ / S cm-1	T/K	σ / S cm $^{-1}$	
343	1.4 x 10 ⁻¹	333	1.3 x 10 ⁻¹	323	1.0 x 10 ⁻¹	313	8.3 x 10 ⁻²	
303	6.4 x 10 ⁻²	298	5.5 x 10 ⁻²					
Hydrated MIL-101(Cr)-SO₃H RH = 80% (I = 0.313 cm, S = 0.1256 cm²)								
т/к	σ / S cm-1	т/к	σ / S cm $^{-1}$	Т/К	σ / S cm ⁻¹	τ/κ	σ / S cm-1	
343	5.1 x 10 ⁻³	333	4.3 x 10 ⁻³	323	3.5 x 10 ⁻³	313	2.8 x 10 ⁻³	
303	2.1 x 10 ⁻³	298	1.8 x 10 ⁻³					

Table S3. Conductivity values deduced from the Nyquist plots, for EMIMCl, MIL-101(Cr)-SO₃H and EMIM@MIL-101-SO₃H powders at different RH/T conditions. 1 and S are the sample thickness and surface.