$M(B(SeO_3)_3)H_2O(M=Al,Ga)$: The first boroselenites with a unique

sandwich like double-layer structure

Ming-Yang Cao^{a,b}, Chun-Li Hu^a, Fang Kong^a, Zhe-Yao Xiong^{a,b}, Jiang-Gao Mao^{*a}

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. E-mail: <u>mjg@fjirsm.ac.cn</u>

^b University of the Chinese Academy of Sciences, Beijing, 100049, China

Supporting information

Content

Table S1. Crystal data and structure refinements for $Al(B(SeO_3)_3)H_2O$ and $Ga(B(SeO_3)_3)H_2O$.

Table S2. Selected bond lengths (Å) for Al(B(SeO₃)₃)H₂O and Ga(B(SeO₃)₃)H₂O. **Table S3** Selected bond Angles (°) for Al(B(SeO3)3)H2O and Ga(B(SeO₃)₃)H₂O. **Table S4** Hydrogen bonds in Al(B(SeO₃)₃)H₂O and Ga(B(SeO₃)₃)H₂O.

Table S5 Bond valence calculations for oxygen atoms in $Al(B(SeO_3)_3)H_2O$ and $Ga(B(SeO_3)_3)H_2O$.

Figure S1. Powder X-ray diffraction patterns of $Al(B(SeO_3)_3)H_2O$ (a) and $Ga(B(SeO_3)_3)H_2O$ (b).

Figure S2. IR spectra of Al(B(SeO₃)₃)H₂O (a) and Ga(B(SeO₃)₃)H₂O (b).

Figure S3. Photograph of $Al(B(SeO_3)_3)H_2O$ for the measurement of birefringence.

Figure S4. Photograph of $Ga(B(SeO_3)_3)H_2O$ for the measurement of birefringence.

Figure S5. The calculated band structure of $Al(B(SeO_3)_3)H_2O$ (a) and $Ga(B(SeO_3)_3)H_2O$ (b).

Figure S6. The graphs of scissor-added partial density of states and the largest tensors for $Al(B(SeO_3)_3)H_2O$ (a) and $Ga(B(SeO_3)_3)H_2O$ (b).

Formula	Al(B(SeO ₃) ₃)H ₂ O $Ga(B(SeO_3)_3)H_2O$		
Formula weight	434.80	479.43	
Temperature	293(2)K	293(2)K	
Wavelength	0.71073	0.71073	
Space group	Pbca	Pbca	
a (Å)	8.4650(5)	8.5773(5)	
b (Å)	8.7788(7)	8.8445(5)	
c (Å)	21.9237(14)	22.0195(13)	
Volume (Å ³)	1629.21(19)	1670.44(17)	
Z, Calculated density(g/cm ³)	8, 3.545	8, 3.813	
Absorption coefficient(mm ⁻¹)	13.695	16.409	
F(000)	1601.0	1760.0	
Theta range for data collection	3.716 to 54.206 deg	6.022 to 54.202 deg	
Limiting indices	$-10 \le h \le 10, -11 \le k \le 8,$ $-28 \le 1 \le 27$	$-10 \le h \le 10, -11 \le k \le 11,$ $-28 \le 1 \le 27$	
Reflections collected	11735	20265	
Independent reflections	1794 [$R_{int} = 0.0482$, $R_{sigma} = 0.0283$]	1843 [$R_{int} = 0.0835$, $R_{sigma} = 0.0328$]	
Refinement method	Full-matrix least-squares on F_0^2 Full-matrix least-squares on F_0^2		
Goodness-of-fit on F2	1.130	1.069	
Final R indices [I>2sigma(I)]	$R_1 = 0.0275, wR_2 = 0.0542$	$R_1 = 0.0240, wR_2 = 0.0575$	
R indices (all data) ^a	$R_1 = 0.0335, wR_2 = 0.0569$	$R_1 = 0.0281, wR_2 = 0.0597$	
Largest diff. peak and hole	0.62/-1.00 e.A ⁻³	0.73/-1.06 e.A ⁻³	
${}^{a}R_{1} = \Sigma F_{o} - F_{c} /\Sigma F_{o} $ and $wR_{2} = [\Sigma w(F_{o}^{2} - F_{c}^{2})^{2}/\Sigma wF_{o}^{4}] 1/2$ for $F_{o}^{2} > 2\sigma(F_{o}^{2})$.			

Table S1. Crystal data and structure refinements for $Al(B(SeO_3)_3)H_2O$ and $Ga(B(SeO_3)_3)H_2O$.

Al(B(SeO ₃) ₃)H ₂ O		Ga(B(SeO ₃) ₃)H ₂ O	
Atom- Atom	Length/Å	Atom- Atom	Length/Å
Al1-O1	1.893(3)	Ga1-O1	1.973(3)
Al1-O4	1.880(3)	Ga1-O4	1.944(2)
Al1- O5#1	1.908(3)	Ga1- O5#1	1.956(2)
Al1- 07	1.876(3)	Ga1- O7	1.939(2)
Al1- O9#2	1.895(3)	Ga1- O9#2	1.954(2)
All-Olw	1.917(3)	Ga1- O1w	1.997(3)
B1- O2#3	1.463(5)	B1- O2#3	1.470(4)
B1- O3	1.483(5)	B1- O3	1.479(4)
B1- O6	1.460(5)	B1- O6	1.453(5)
B1- O8#2	1.476(5)	B1- O8#2	1.478(5)
Se1- O1	1.660(3)	Se1- O1	1.662(3)
Se1- O2	1.714(3)	Se1- O2	1.709(3)
Se1-O3	1.730(3)	Se1-O3	1.732(2)
Se2-O4	1.689(3)	Se2-O4	1.687(2)
Se2-O5	1.682(3)	Se2-O5	1.687(2)
Se2-O6	1.739(3)	Se2-O6	1.737(3)
Se3-O7	1.683(3)	Se3-O7	1.682(2)
Se3-O8	1.744(3)	Se3-O8	1.737(2)
Se3-O9	1.674(3)	Se3-09	1.674(2)

Table S2. Selected bond lengths (Å) for $Al(B(SeO_3)_3)H_2O$ and $Ga(B(SeO_3)_3)H_2O$.

Sym

metry transformations used to generate equivalent atoms: #1 3/2-x,1/2+y,+z; #2 1/2-x,-1/2+y,+z; #3 1-x,-1/2+y,1/2-z;

Al(B(SeO)	3)3)H ₂ O	Ga(B(SeC	0 ₃) ₃)H ₂ O
Atom-Atom-Atom	Angle/°	Atom-Atom-Atom	Angle/°
O1-Al1-O5#1	91.00(14)	O1-Ga1- O5#1	92.20(11)
O1-Al1-O9#2	90.94(14)	O1-Ga1- O9#2	89.72(11)
01-Al1-O1W	176.33(13)	O1-Ga1-O1W	175.08(11)
01-Al1-O4	96.11(13)	O1-Ga1-O4	96.68(11)
01-Al1-O7	88.50(13)	O1-Ga1-O7	87.43(11)
O4-A11-O5#1	90.81(13)	O4-Ga1-O5#1	90.66(10)
O4-A11-O9#2	89.36(13)	O4-Ga1-O9#2	89.20(10)
04-Al1-O1W	87.26(13)	O4-Ga1-O1W	87.13(11)
O4-A11-O7	175.34(13)	O4-Ga1-O7	175.58(11)
O5#1-Al1-O1W	90.41(13)	O5#1-Ga1-O1W	90.86(11)
O5#1- Al1-O7	89.74(13)	O5#1-Ga1-O7	90.79(10)
O5#1- Al1-O9#2	178.03(13)	O5#1-Ga1-O9#2	178.08(11)
O7-Al1-O9#2	89.94(13)	O7-Ga1- O9#2	89.21(10)
07-Al1-O1W	88.11(12)	O7-Ga1-O1W	88.68(10)
O9#2-A11-O1W	87.63(13)	O9#2-Ga1-O1W	87.22(11)
O2#3-B1-O3	109.6(3)	O2#3-B1-O3	109.6(3)
O2#3-B1-O6	105.0(3)	O2#3-B1-O6	106.0(3)
O2#3-B1-O8 ²	109.1(3)	O2#3-B1-O8 ²	107.2(3)
O3-B1-O6	110.0(3)	O3-B1-O6	109.8(3)
O3-B1-O8#2	108.5(3)	O3-B1-O8#2	109.3(3)
O6-B1-O8#2	114.5(3)	O6-B1-O8#2	114.8(3)
O1-Se1-O2	98.99(14)	O1-Se1-O2	98.61(13)
O1-Se1-O3	99.79(15)	01-Se1-O3	99.62(13)
O2-Se1-O3	91.84(14)	O2-Se1-O3	92.98(12)
O4-Se2-O5	98.56(13)	O4-Se2-O5	97.10(11)
O4-Se2-O6	98.44(14)	O4-Se2-O6	98.47(12)
O5-Se2-O6	97.50(13)	O5-Se2-O6	98.06(12)
07-Se3-O8	96.22(14)	07-Se3-O8	96.39(11)
O7-Se3-O9	96.89(13)	O7-Se3-O9	96.16(12)
O8-Se3-O9	99.36(14)	O8-Se3-O9	99.59(12)

 $\label{eq:constraint} \textbf{Table S3} \ Selected \ bond \ angles (`) \ for \ Al(B(SeO_3)_3)H_2O \ and \ Ga(B(SeO_3)_3)H_2O.$

Symmetry transformations used to generate equivalent atoms: #1 3/2-x,1/2+y,+z; #2 1/2-x,-1/2+y,+z; #3 1-x,-1/2+y,1/2-z;

$Al(B(SeO_3)_3)H_2O$				
D-HA	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
O1W-H1WBO7#1	0.86	2.17	2.912(4)	144.7
O1W-H1WAO5#2	0.86	1.93	2.757(4)	161.6
	Ga(E	$B(SeO_3)_3)H_2O$		
D-HA	d(D-H)/Å	d(H-A)/Å	d(D-A)/Å	D-H-A/°
O1W-H1WBO7#1	0.87	2.10	2.849(3)	143.2
O1W-H1WAO5#2	0.87	1.92	2.753(3)	159.5

Table S4 Hydrogen bonds in Al(B(SeO₃)₃)H₂O and Ga(B(SeO₃)₃)H₂O.

Symmetry transformations used to generate equivalent atoms: #1 1/2+x,3/2-y,-z; #2 -1/2+x,3/2-y,-z

Table S5 Bond valence calculations for oxygen atoms in $Al(B(SeO_3)_3)H_2O$ and $Ga(B(SeO_3)_3)H_2O$.

$Al(B(SeO_3)_3)H_2O$			$Ga(B(SeO_3)_3)H_2O$	
Atom	Bond valence	Atom	Bond valence	
01	2.02	01	2.02	
O2	2.09	O2	2.07	
O3	1.98	O3	1.98	
O4	1.91	O4	1.94	
05	1.92	05	1.91	
O6	1.99	O6	2.01	
O7	1.96	O7	1.98	
08	1.95	O8	1.95	
09	1.97	09	2.01	
O1w	0.48	O1w	0.48	

Figure S1. Powder X-ray diffraction patterns of $Al(B(SeO_3)_3)H_2O$ (a) and $Ga(B(SeO_3)_3)H_2O$ (b).

Figure S2. IR spectra of $Al(B(SeO_3)_3)H_2O(a)$ and $Ga(B(SeO_3)_3)H_2O(b)$.

Figure S3. Photograph of $Al(B(SeO_3)_3)H_2O$ for the measurement of birefringence.

Figure S4. Photograph of $Ga(B(SeO_3)_3)H_2O$ for the measurement of birefringence.

Figure S5. The calculated band structure of $Al(B(SeO_3)_3)H_2O$ (a) and $Ga(B(SeO_3)_3)H_2O$ (b).

Figure S6. The graphs of scissor-added partial density of states and the largest tensors for $Al(B(SeO_3)_3)H_2O(a)$ and $Ga(B(SeO_3)_3)H_2O(b)$.