Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Supporting Information

A series of organic hybrid polyoxovanadate clusters incorporating

tris(hydroxymethyl)methane derivatives

Li Huang, Congrui Ouyang, Xing Liu, Jian Zhou,* Hua-hong Zou,* Hua Yuan,* and Dou

Wen

			1		
Bonds		ν	Bonds		ν
V1-O1	1.9988(18)	0.559	V2-01	1.9719(19)	0.602
$V1 - O2^{\#1}$	2.3186(18)	0.236	V2-O2	2.3394(18)	0.223
V1-O5#1	1.9667(19)	0.610	V2-O2#1	2.0013(18)	0.556
V1-06	1.604(2)	1.626	V2-O4	1.5895(19)	1.690
V1-07	1.9871(19)	0.577	V2-O5	1.9764(19)	0.589
V1-08	1.9986(19)	0.559	V2-N1	2.121(2)	0.401
	sum	4.169		sum	4.068
			2		
Bonds		ν	Bonds		ν
V1-O1#1	2.0030(15)	0.553	V2-O1#1	2.2880(15)	0.256
V1-O2	1.9613(16)	0.619	V2-O2	1.9903(16)	0.572
V1-04	1.5962(17)	1.661	V2-O3	1.6005(18)	1.642
V1-06	2.0009(16)	0.556	V2-O4#1	1.9809(17)	0.587
V1-01	2.3067(16)	0.243	V2-06	2.0036(17)	0.552
V1-N1	2.1208(19)	0.402	V2-08	1.9997(19)	0.558
	sum	4.036		sum	4.169
		3	Ba		
Bonds		ν	Bonds		ν
V1-01	2.302(3)	0.246	V3-O10	2.301(3)	0.247
V1-01#1	2.014(3)	0.537	V3-O10 ^{#1}	2.010(3)	0.543
V1-O2	1.959(4)	0.623	V3-09	1.967(4)	0.609
V1-N1	2.123(4)	0.400	V3-015	1.609(3)	1.604
V1-04	1.601(4)	1.640	V3-016	2.000(4)	0.557
V1-05	2.008(4)	0.545	V3-N2	2.125(4)	0.398
	sum	3.992		sum	3.960
V2-01	2.284(4)	0.258	V4-09	1.997(4)	0.562
$V2 - O2^{\#1}$	1.999(3)	0.559	V4-O10#2	2.293(4)	0.252
V2-05	1.989(4)	0.575	V4-012	1.594(4)	1.671
V2-06	1.602(4)	1.635	V4-013	2.001(4)	0.556
V2-07	2.003(4)	0.553	V4-014	2.006(4)	0.548
V2-08	2.011(4)	0.541	V4-O16#2	1.991(4)	0.571
	sum	4.123		sum	4.163

Table S1 The bond valence sum of V atoms for 1-8.

3b					
Bonds		ν	Bonds		ν
V1-01	2.2652(18)	0.272	V3-09	1.966(2)	0.611
V1-01#1	1.9968(18)	0.562	V3-O10 ^{#2}	1.9893(18)	0.574
V1-O2	1.964(2)	0.614	V3-O10	2.2896(18)	0.255
V1-O4	1.6025(19)	1.633	V3-012	1.6150(18)	1.579
V1-08	1.991(2)	0.571	V3-013	1.990(2)	0.573
V1-N1	2.136(2)	0.386	V3-N2	2.119(2)	0.404
	sum	4.041		sum	3.997
V2-01	2.327(2)	0.230	V4-09 ^{#2}	2.0141(19)	0.537
V2-O2 ^{#1}	2.0075(19)	0.546	V4-010	2.321(2)	0.235
V2-O5	1.589(2)	1.694	V4-013	2.0062(19)	0.548
V2-06	2.015(2)	0.536	V4-014	1.588(2)	1.698
V2-07	2.000(2)	0.558	V4-015	2.010(2)	0.543
V2-08	1.997(2)	0.562	V4-016	1.992(2)	0.569
	sum	4.123		sum	4.131
		2	1		
Bonds		ν	Bonds		ν
V1-O1#1	2.301(2)	0.247	V2-O1#1	2.014(2)	0.537
V1-02	1.998(2)	0.561	V2-01	2.307(2)	0.243
V1-O4#1	2.005(2)	0.550	V2-O2	1.965(2)	0.613
V1-07	2.012(2)	0.539	V2-O4	2.012(2)	0.540
V1-08	2.013(2)	0.538	V2-06	1.6036(19)	1.628
V1-09	1.591(2)	1.685	V2-N1	2.125(2)	0.398
		4.122			3.960
		4	5		
Bonds		ν	Bonds		ν
V1-01	1.9608(17)	0.620	V2-O1#1	1.9981(17)	0.561
$V1 - O2^{#1}$	1.9992(17)	0.559	V2-O2	2.3268(18)	0.231
V1-O2	2.2973(16)	0.249	V2-05	2.0020(18)	0.555
V1-04	1.6031(16)	1.631	V2-06	1.9969(19)	0.562
V1-08	1.9900(18)	0.573	V2-07	1.595(2)	1.667
V1-N1	2.122(2)	0.401	V2-08	2.0056(17)	0.549
	sum	4.033		sum	4.124
6					
Bonds		ν	Bonds		ν
V1-01	2.255(2)	0.279	V2-O1#1	1.992(2)	0.570
V1-09	2.090(3)	0.437	V2-01	2.389(2)	0.195
V1-08	2.035(2)	0.507	V2-07	2.017(3)	0.533
$V1 - O2^{#1}$	2.010(2)	0.543	V2-05	1.617(2)	1.570
V1-O3#1	1.989(2)	0.575	V2-O2	2.007(2)	0.547
V1-06	1.607(3)	1.613	V2-O3#1	2.003(2)	0.553
	sum	3.955		sum	3.969

7					
Bonds		ν	Bonds		ν
V1-O4	1.996(2)	0.565	V4-O4	2.012(2)	0.539
V1-06	2.004(2)	0.548	V4-O5	2.003(2)	0.553
V1-O10	1.606(3)	1.618	V4-07	2.006(2)	0.548
V1-017	2.354(2)	0.214	V4-08	2.010(2)	0.542
V1-018	1.995(2)	0.562	V4-013	1.608(3)	1.609
V1-019	1.992(2)	0.573	V4-017	2.282(2)	0.260
	sum	4.081		sum	4.054
V2-08	2.005(2)	0.550	V5-01	2.006(2)	0.548
V2-09	2.005(2)	0.550	V5-O2	1.998(2)	0.561
V2-015	1.609(3)	1.604	V5-012	1.609(3)	1.605
V2-016	1.981(3)	0.587	V5-016	1.995(3)	0.565
V2-017	2.331(2)	0.228	V5-017	2.368(2)	0.206
V2-019	1.991(2)	0.571	V5-018	2.007(2)	0.547
	sum	4.092		sum	4.033
V3-O2	2.007(2)	0.547	V6-01	1.999(2)	0.559
V3-O3	2.008(3)	0.546	V6-O3	1.996(2)	0.564
V3-07	2.012(2)	0.540	V6-05	2.009(2)	0.544
V3-09	2.006(2)	0.549	V6-06	2.017(2)	0.533
V3-011	1.606(3)	1.618	V6-014	1.611(3)	1.596
V3-017	2.293(2)	0.253	V6-017	2.233(2)	0.297
	sum	4.052		sum	4.094
		8	3		
Bonds		ν	Bonds		ν
V1-05	2.040(4)	0.5001	V5-01	1.982(5)	0.586
V1-07	2.028(5)	0.517	V5-02	2.020(5)	0.528
V1-011	2.011(5)	0.541	V5-05	2.053(5)	0.483
V1-012	2.005(5)	0.550	V5-07	2.055(5)	0.481
V1-018	1.594(5)	1.671	V5-019	1.602(5)	1.635
V1-O23	2.304(4)	0.245	V5-O21	2.196(4)	0.328
	sum	4.026		sum	4.042
V2-04	1.940(5)	0.656	V6-04	2.003(5)	0.552
V2-05	2.315(4)	0.238	V6-010	1.994(5)	0.566
V2-021	1.955(4)	0.629	V6-011	1.997(5)	0.561
V2-022	1.657(4)	1.401	V6-014	2.053(7)	0.482
V2-O23	1.973(4)	0.600	V6-015	1.591(5)	1.682
V2-N2	2.111(6)	0.413	V6-023	2.297(4)	0.249
	sum	3.946		sum	4.094
V3-01	2.331(6)	0.228	V7-08	1.970(5)	0.604
V3-O2	2.075(4)	0.455	V7-O10	1.975(5)	0.596
V3-017	1.588(6)	1.696	V7-012	1.996(5)	0.563
V3-O21	1.947(4)	0.644	V7-013	2.017(6)	0.532

V3-O22 ^{#3}	2.011(4)	0.541	V7-O16	1.595(6)	1.664
V3-N1	2.091(6)	0.435		sum	3.958
	sum	3.999			
V4-07	2.394(5)	0.192			
V4-08	1.966(5)	0.610			
V4-O20	1.599(5)	1.646			
V4-021	1.970(5)	0.604			
V4-O23	1.986(4)	0.578			
V4-N3	2.132(6)	0.389			
	sum	4.021			

(#1)1-x,1-y,1-z; (#2)1-x,2-y, -z; (#3)1/2-x,1/2-y,1-z

Fig. S1 The asymmetric unit of 1 (H atoms bonded to C and N atoms have been omitted for

clarity).

Fig. S2 The 2-D sql layer constructed by N-H \cdots O and O-H \cdots O H-bonds in **3a**. H atoms bonded to C and N atoms are omitted for clarity.

Fig. S3 The packing modes of the tetravanadyl clusters in 2.

Fig. S4 The asymmetric unit of **6** (H atoms bonded to C and N atoms have been omitted for clarity).

Fig. S5 The 2-D sql layer constructed by N-H \cdots O and O-H \cdots O H-bonds in **6**. H atoms bonded to C and N atoms are omitted for clarity.

Fig. S6 The layers aligned in a parallel mode in **6**.

Fig. S7 The 3-D H-bonding network structure in **8**. H atoms bonded to C and N atoms are omitted for clarity.

Fig. S8 UV-vis spectrum of 8.

Fig. S9 The thermogravimetric curves of **1-8**.

Fig. S10 UV-vis spectrum of Htri.

Fig. S11 Single crystal photo maps of **3a** and **3b**, showing different crystal shapes.

Fig. S12 Simulated and experimental powder XRD patterns of all compounds.