Electronic Supplementary material.

Remote Control: Stereoselective Coordination of Electron-Deficient 2,2'bipyridine Ligands to Re(I) and Ir(III) Cores

Kimberley Jerwood,⁺ Phoebe Lowy,⁺ Laura Deeming,⁺ Benson M. Kariuki,⁺ and Paul D.

Newman[‡]*

⁺School of Chemistry, Cardiff University, Cardiff, CF10 3AT, Wales, UK.

^{*†*}Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, Wales, UK.

Contents

1. Experimental DetailsS2	2
1.1 Materials and Analytical methods	2
2. Synthetic procedures	
2.1. [4-L ^{Me} H]BF ₄ , 4^{Me} S2	2
2.2. [5-L ^{Me} H]BF ₄ , 5^{Me} So	6
2.3. [6-L ^{Me} H]BF ₄ , 6^{Me} St	9
2.4. [6-L ^{Mes} H]BF ₄ , 6^{Mes} S	514
2.5. <i>C</i> -[Re(CO) ₃ (4-L ^{Me} H)Cl](BF ₄) ₂ , <i>C</i> - Re-4^{Me}	17
2.6. <i>C</i> -[Re(CO) ₃ (5-L ^{Me} H)Cl](BF ₄) ₂ , <i>C</i> - Re-5^{Me}	21
2.7. <i>C</i> -[Re(CO) ₃ (6-L ^{Me} H)Cl](BF ₄) ₂ , <i>C</i> - Re-6^{Me} Si	25
2.8. C-[Re(CO) ₃ (6-L ^{Mes} H)Cl](BF ₄) ₂ , C- Re-6^{Mes}	29
2.9. Δ-[Ir(Phpy) ₂ (4-L ^{Me} H)](BF ₄) ₂ , Δ- Ir-4^{Me}	18
2.10. Δ,Λ-[Ir(Phpy) ₂ (5-L ^{Me} H)](BF ₄) ₂ , Δ,Λ- Ir-5^{Me} Si	37
3. CD/Electronic spectraS	43
4. Crystallographic dataS	547
5. ReferencesS	50

1.1 Materials and analytical methods

All chemicals were purchased from commercial sources and used without further purification unless otherwise stated. NMR spectra were recorded on Bruker Fourier 300, DPX 400 and Avance 500 or 600 MHz NMR spectrometers. ¹H and ¹³C{¹H} NMR chemical shifts were referenced relative to the residual solvent resonances in the deuterated solvent. Mass spectra (ESI) were recorded on a Waters LCT premier XE spectrometer. A Chirascan spectrometer (Applied Photophysics, Leatherhead, U.K.) was used to measure both linear dichroism (LD) and circular dichroism (CD) spectra using a 1 cm path length quartz cuvette.

Single-crystal XRD data were collected on an Agilent SupaNova Dual Atlas diffractometer with a mirror monochromator using either Cu (λ = 1.5418 Å) or Mo (λ = 0.7107 Å) radiation. Sample temperature was controlled using an Oxford Cryosystems cooling apparatus. Crystal structures were solved and refined using SHELXS and refined using SHELXL.¹ Non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were inserted in idealized positions, and a riding model was used with Uiso set at 1.2 or 1.5 times the value of Ueq for the atom to which they are bonded.

2. Synthetic procedures

The bipy functionalised diamine precursor was prepared in a similar way to the pyridine derivative reported by Wilhelm et al.² A mixture of (1R,3S)-1,3-diamino-1,2,2-trimethylcyclopentane (1.05 g, 7.4 mmol), 4-bromobipyridine (1.73 g, 7.4 mmol), Pd₂(dba)₃ (0.1 g, 0.12 mmol), BINAP (0.3 g, 0.48 mmol) and NaO^tBu (2.0 g, 20.1 mmol) in toluene was heated at 100 °C for 48 hrs. After cooling, the mixture was passed through a Celite plug which was washed with CH₂Cl₂ (3 x 25 ml). The solvents were removed in vacuo and the residue portioned between 12M HCl (20 ml) and CH₂Cl₂ (50 ml). The aqueous phase was isolated and made basic (care!) by the addition of solid NaOH with cooling and constant agitation. The basic solution was subsequently extracted into CH₂Cl₂ (3 x 50 ml) and the organic extracts dried over MgSO₄, filtered and taken to dryness to yield a viscous oil. The crude diamine was dissolved in HC(OEt)₃ (25 ml), solid NH₄BF₄ (0.78 g, 7.4 mmol) added thereto and the whole mix heated to 100 °C for 2 hours whereupon a cream precipitate formed. After cooling the solid was filtered and washed with Et₂O (3 x 20 ml) and air-dried. A portion of the solid (1.0 g, 2.5 mmol) was dissolved in dry MeCN (40 ml) to which MeI (0.2 ml, 3.2 mmol) and K_2CO_3 (0.93 g, 7.5 mmol) were added. The mixture was stirred at RT for 72 hours, filtered and the volatiles removed in vacuo to yield a pale yellow solid. This proved to be a mixture of [4-L^{Me}H]BF₄ and [4-L^{Me}H]I. To convert fully to the BF₄⁻ salt the solid was dissolved in CH₂Cl₂ (20 ml) and shaken with a sat. aq. solution of NH₄BF₄ (2 x 10 ml). The organic phase was dried over MgSO₄, filtered and the solvents removed in vacuo to give [4-L^{Me}H]BF₄ as a white solid. Yield (based on the starting diamine) = 72%.

¹H (d₆-acetone, 300 MHz): 8.82 (s, 1H), 8.63 (d, 5.3 Hz, 1H), 8.58 (d, 4.5 Hz, 1H), 8.37 (d, 7.9 Hz, 1H), 8.33 (s, 1H), 7.86 (t, 7.8 Hz, 1H), 7.50 (m, 1H), 7.37 (m, 1H), 4.36 (s br, 1H), 3.44 (s, 3H), 2.73 (m, 1H), 2.41 (m, 2H), 2.13 (m, 1H), 1.44 (s, 3H), 1.25 (s, 3H), 1.19 (s, 3H) ppm. ¹³C{¹H} (d₆-acetone, 100 MHz): 158.0 (C), 154.6 (C), 153.6 (C), 151.3 (CH), 149.3 (CH), 148.6 (CH), 137.4 (CH), 124.8 (CH), 121.2 (CH), 115.1 (CH), 111.2 (CH), 72.3 (C), 68.3 (CH), 41.7 (C), 38.8 (CH₂), 38.0 (CH₃), 31.1 (CH₂), 20.9 (CH₃), 16.1 (CH₃), 13.2 (CH₃) ppm. HRMS (ES): m/z 321.2083 (calc. 321.2079) [L]⁺, 100%.

Figure S1. ¹H NMR (d₆-acetone, 298 K, 300 MHz) spectrum of [4-L^{Me}H]BF₄, 4^{Me}.

Figure S2. ¹³C{¹H} NMR (d₆-acetone, 298 K, 100 MHz) spectrum of [4-L^{Me}H]BF₄, 4^{Me}.

Figure S3. ¹H/¹H COSY NMR (d₆-acetone, 298 K, 400 MHz) spectrum of [4-L^{Me}H]BF₄, 4^{Me}.

Figure S4. ${}^{1}H/{}^{1}H$ NOESY NMR (d₆-acetone, 298 K, 400 MHz) spectrum of [4-L^{Me}H]BF₄, 4^{Me}.

Figure S5. ¹H/¹³C HSQC NMR (d₆-acetone, 298 K, 400 MHz) spectrum of [4-L^{Me}H]BF₄, 4^{Me}.

Minimum: Maximum:		5.0	5.0	-1.5 100.0					
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula	
321.2083	321.2079	0.4	1.2	10.5	1089.1	n/a	n/a	C20 H25 N	4

Figure S6. HRMS spectrum and data for [4-L^{Me}H]BF₄, 4^{Me}.

2.2. [5-L^{Me}H]BF₄, 5^{Me}.

This was prepared in the same way as defined for $[4-L^{Me}H]BF_4$. Yield = 82%.

¹H (d₆-acetone/d₆-dmso, 400 MHz): 8.76 (dd, 2.7, 0.6 Hz, 1H), 8.57 (ddd, 4.7, 1.8, 0.9 Hz, 1H), 8.56 (s 1H), 8.43 (dd, 8.7, 0.5 Hz, 1H), 8.31 (dt, 8.0, 0.9 Hz, 1H), 8.01 (dd, 8.7, 2.8 Hz, 1H), 7.82 (td, 7.8, 1.9 Hz, 1H), 7.37 (ddd, 7.6, 4.8, 0.5 Hz, 1H), 4.19 (d, 5.0 Hz, 1H), 3.37 (s, 3H), 2.73 (m, 1H), 2.71 (m, 1H), 2.43 (m, 1H), 2.33 (m, 1H), 2.09 (m, 1H), 1.41 (s, 3H), 1.22 (s, 6H) ppm. ¹³C{¹H} (d₆-acetone/d₆-dmso, 100 MHz): 155.0 (C), 154.7 (C), 153.6 (CH), 149.6 (CH), 142.9 (CH), 137.8 (C), 137.3 (CH), 130.6 (CH), 124.5 (CH), 121.2 (CH), 120.8 (CH), 71.6 (C), 69.6 (CH), 41.5 (C), 39.0 (CH₂), 37.5 (CH₃), 31.2 (CH₂), 20.9 (CH₃), 16.2 (CH₃), 13.3 (CH₃) ppm. HRMS (ES): m/z 321.2084 (calc. 321.2079) [L]⁺, 100%.

Figure S7. ¹H NMR (d₆-acetone/d₆-dmso, 298 K, 400 MHz) spectrum of [5-L^{Me}H]BF₄, 5^{Me}.

Figure S8. ¹³C{¹H} NMR (d₆-acetone/d₆-dmso, 298 K, 100 MHz) spectrum of [5-L^{Me}H]BF₄, 5^{Me}.

Figure S9. ¹H/¹H COSY NMR (d₆-acetone/d₆-dmso, 298 K, 400 MHz) spectrum of [5-L^{Me}H]BF₄, 5^{Me}.

Figure S10. ¹H/¹H NOESY NMR (d₆-acetone/d₆-dmso, 298 K, 400 MHz) spectrum of [5-L^{Me}H]BF₄, 5^{Me}.

Figure S11. ¹H/¹³C HSQC NMR (d₆-acetone/d₆-dmso, 298 K, 400 MHz) spectrum of [5-L^{Me}H]BF₄, 5^{Me}.

Figure S12. HRMS spectrum and data for [5-L^{Me}H]BF₄, 5^{Me}.

2.3. [6-L^{Me}H]BF₄, 6^{Me}.

This was prepared in the same way as defined for $[4-L^{Me}H]BF_4$. Yield = 85%.

¹H (CDCl₃, 400 MHz): 8.91 (s, 1H), 8.69 (d, 4.8 Hz, 1H), 8.37 (dd, 7.4, 1.7 Hz 1H), 8.34 (dt, 8.0, 1.0 Hz 1H), 7.99 (td, 8.2, 1.9 Hz, 1H), 7.88 (tt, 7.8, 1.8 Hz, 1H), 7.58 (dd, 8.0, 1.4 Hz, 1H), 7.36 (m, 1H), 4.61 (d, 4.2 Hz, 1H), 3.49 (s, 3H), 2.75 (m, 1H), 2.44 (m, 2H), 2.09 (m, 1H), 1.46 (s, 3H), 1.31 (s, 3H), 1.19 (s, 3H) ppm. ¹³C{¹H} (CDCl₃, 100 MHz): 155.3 (C), 154.6 (C), 151.8 (CH), 149.9 (C), 149.5 (CH), 141.0 (CH), 137.1 (CH), 124.4 (CH), 121.3 (CH), 120.0 (CH), 114.2 (CH), 72.1 (C), 65.4 (CH), 41.5 (C), 39.2 (CH₂), 38.7 (CH₃), 31.2 (CH₂), 22.1 (CH₃), 17.1 (CH₃), 14.4 (CH₃) ppm. HRMS (ES): m/z 321.2087 (calc. 321.2079) [L]⁺, 100%.

Figure S13. ¹H NMR (CDCl₃, 298 K, 400 MHz) spectrum of [6-L^{Me}H]BF₄, 6^{Me}.

Figure S14. ¹³C{¹H} NMR (CDCl₃, 298 K, 400 MHz) spectrum of [6-L^{Me}H]BF₄, 6^{Me}.

Figure S15. ¹H/¹H COSY NMR (d₆-acetone, 298 K, 400 MHz) spectrum of [6-L^{Me}H]BF₄, 6^{Me}.

Figure S15. ¹H/¹H NOESY NMR (d₆-acetone, 298 K, 400 MHz) spectrum of [6-L^{Me}H]BF₄, 6^{Me}.

Figure S16. 1 H/ 13 C HSQC NMR (d₆-acetone, 298 K, 400 MHz) spectrum of [6-L^{Me}H]BF₄, 6^{Me}.

Minimum: Maximum:		5.0	5.0	-1.5 100.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula
321.2087	321.2079	0.8	2.5	10.5	1141.6	n/a	n/a	C20 H25 N4

Figure S17. HRMS spectrum and data for [6-L^{Me}H]BF₄, 6^{Me}.

2.4. [6-L^{Mes}H]BF₄, 6^{Mes}.

The C-N coupling reaction was performed as detailed for $[4-L^{Me}H]BF_4$. The product (1.0 g, 3.37 mmol) was dissolved in EtOH (50 ml) and mesitaldehyde (0.5g, 3.37 mmol) added thereto. The solution was heated to 70 °C for one hour, allowed to cool and the volatiles removed in vacuo. The residue was taken up into fresh EtOH (50 ml) to which solid sodium borohydride (0.25 g, 6.6 mmol) was added in portions. The mixture was left to stir overnight at RT before being quenched by the addition of conc. HCl (0.5 ml). After removal of the volatiles in vacuo, the residue was dissolved in water (50 ml) which was made basic by the addition of solid NaOH. The basic solution was extracted with CH_2Cl_2 (3 x 40 ml) and the organic phase dried over MgSO₄, filtered and taken to dryness to yield an oil which was used without further purification in the final two steps which were performed as detailed in 2.1. above. Yield = 67%.

¹H (CD₃CN, 400 MHz): 8.59 (dm, 4.9 Hz, 1H), 8.32 (s, 1H), 8.22 (d, 8.0 Hz 1H), 8.00 (t, 8.1 Hz 1H), 7.92 (td, 7.8, 1.5 Hz, 1H), 7.51 (dt, 7.9, 0.8 Hz, 1H), 7.45 (d, 8.3 Hz, 1H), 7.42 (ddd, 7.5, 4.7, 1.0 Hz, 1H), 7.10 (s, 2H), 5.04 (d, 14.0 Hz, 1H), 4.79 (d, 14.0 Hz, 1H), 4.56 (d, 3.7 Hz, 1H), 2.54 (m, 1H), 2.39-2.12 (m, 3H), 1.71 (s, 3H), 1.29 (s, 3H), 1.14 (s, 3H) ppm. ¹³C{¹H} (CD₃CN, 100 MHz): 155.4 (C), 154.5 (C), 150.3 (C), 150.2 (CH), 148.6 (CH), 141.7 (C), 141.0 (C), 139.9 (CH), 137.7 (CH), 130.5 (CH), 125.3 (CH), 124.8 (C), 120.7 (CH), 111.9 (CH), 74.1 (C), 66.4 (CH), 48.6 (CH₂), 42.3 (CH₂), 31.5 (CH₂), 21.5 (CH₃), 21.0 (CH₃), 19.5 (CH₃), 16.7 (CH₃), 13.7 (CH₃) ppm. HRMS (ES): m/z 439.2874 (calc. 439.2862) [L]⁺, 100%.

Figure S18. ¹H NMR (CD₃CN, 298 K, 400 MHz) spectrum of [6-L^{Mes}H]BF₄, 6^{Mes}.

Figure S19. ¹³C{¹H} NMR (CD₃CN, 298 K, 100 MHz) spectrum of [6-L^{Mes}H]BF₄, 6^{Mes}.

Figure S20. ¹H/¹H COSY NMR (CD₃CN, 298 K, 400 MHz) spectrum of [6-L^{Mes}H]BF₄, 6^{Mes}.

Figure S21. ¹H/¹H NOESY NMR (CD₃CN, 298 K, 400 MHz) spectrum of [6-L^{Mes}H]BF₄, **6**^{Mes}.

Figure S22. ¹H/¹³C HSQC NMR (CD₃CN, 298 K, 400 MHz) spectrum of [6-L^{Mes}H]BF₄, 6^{Mes}.

Minimum: Maximum:		5.0	5.0	-1.5 100.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula
439.2874	439.2862	1.2	2.7	14.5	1042.2	n/a	n/a	C29 H35 N4

Figure S23. HRMS spectrum and data for [6-L^{Mes}H]BF₄, 6^{Mes}.

2.5. C-[Re(CO)₃(4-L^{Me}H)Cl]BF₄, C-Re-4^{Me}.

A solution of [Re(CO)₅Cl] (100 mg, 2.76 x 10^{-4} mol) and [4-L^{Me}H]BF₄ (113 mg, 2.76 x 10^{-4} mol) in chlorobenzene (7 ml) was heated to 100 °C for two hours whereupon a yellow-precipitate formed. After cooling, the solid was filtered, washed with diethyl ether and air-dried. Yield = 157 mg (80%). A second crop could be isolated from the mother liquor on standing. Yield = 11%.

¹H (d₆-dmso, 400 MHz): 8.86 (obs, 1H), 8.85 (s, 1H), 8.82 (dd, 6.2, 1.0 Hz 1H), 8.64 (d, 8.0 Hz 1H), 8.47 (t, 2.3 Hz, 1H), 8.24 (tt, 7.9, 1.2 Hz, 1H), 7.62 (m, 2H), 4.34 (t, 4.6 Hz, 1H), 3.22 (s, 3H), 2.36 (m, 1H), 2.20-2.00 (m, 2H), 1.89 (m, 1H), 1.21 (s, 3H), 1.03 (s, 3H), 0.90 (s, 3H) ppm. ¹³C{¹H} (d₆-dmso, 100 MHz): 198.2 (CO), 198.1 (CO), 190.4 (CO), 157.3 (C), 155.2 (CH), 154.5 (C), 154.1 (C), 153.6 (CH), 149.7 (CH), 140.7 (CH), 128.9 (CH), 125.3 (CH), 117.5 (CH), 114.6 (CH), 72.8 (C), 67.2 (CH), 42.0 (C), 39.0 (CH₂), 38.6 (CH₃), 30.8 (CH₂), 21.6 (CH₃), 16.7 (CH₃), 13.7 (CH₃) ppm. HRMS (ES): m/z 627.1183 (calc. 627.1173) [L]⁺, 100%.

Figure S24. ¹H NMR (d₆-dmso, 298 K, 400 MHz) spectrum of C-[Re(CO)₃(4-L^{Me}H)Cl]BF₄, C-Re-4^{Me}.

Figure S25. ¹³C{¹H} NMR (d₆-dmso, 298 K, 100 MHz) spectrum of C-[Re(CO)₃(4-L^{Me}H)Cl]BF₄, C-Re-4^{Me}.

Figure S26. ¹H/¹H COSY NMR (d₆-dmso, 298 K, 400 MHz) spectrum of *C*-[Re(CO)₃(4-L^{Me}H)Cl]BF₄, *C*-**Re-4**^{Me}.

Figure S27. ¹H/¹H NOESY NMR (d₆-dmso, 298 K, 400 MHz) spectrum of *C*-[Re(CO)₃(4-L^{Me}H)Cl]BF₄, *C*-**Re-4**^{Me}.

Figure S28. ¹H/¹³C HSQC NMR (d₆-dmso, 298 K, 400 MHz) spectrum of *C*-[Re(CO)₃(4-L^{Me}H)Cl]BF₄, *C*-**Re-4**^{Me}.

Monoisotopic 74 formula(e) Elements Use C: 0-23 H: 0	Mass, Odd an evaluated with d: -25 N: 0-4	d Even Ele 1 results O: 0-3 C	ectron lor within lim	ns nits (up to 50 187Re: 0-1) closest re	esults for e	each mass)				
22-Sep-2020 4AMMERE PDN_MS30728_ESP 21 (0.220)							Cardiff	Uni Synapt G2-S 1: TOF MS ES+ 2.74e+006				
100 <u>6</u> 605.0	07.1450 610.18 610.0	612.182 6 6	7 	619.1380 620.0	625.1167 	627.1183 	629.1174 e 630.0	635.0	639.1309	<u>641.1318</u> 640.0	643.1304 645.0	646.8354 - 1 - 1 - 1 - 1 m/z
Minimum: Maximum:		20.0	10.0	-1.5 50.0								
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula				
627.1183	627.1173	1.0	1.6	13.0	638.3	n/a	n/a	C23 H25	N4 03	Cl 187Re		

Figure S30. Solid-state IR spectrum of C-[Re(CO)₃(4-L^{Me}H)Cl]BF₄, C-Re-4^{Me}.

2.6. C-[Re(CO)₃(5-L^{Me}H)Cl]BF₄, C-Re-5^{Me}.

This was prepared in the same manner as described for the $[4-L^{Me}H]BF_4$ derivative. The complex was crystallised upon slow evaporation of a saturated solution in acetone to give acicular crystals. Yield = 61%.

¹H (d₆-acetone, 400 MHz): 9.48 (s, 1H), 9.22 (dd, 5.3, 0.8 Hz, 1H), 8.97 (d, 7.9 Hz 1H), 8.90 (d, 8.3 Hz 1H), 8.60 (t, 8.0 Hz, 1H), 8.46 (d obs, 7.9 Hz, 1H), 8.45 (td obs, 8.0, 1.5 Hz, 1H), 7.96 (ddd, 7.7, 5.4, 1.0 Hz, 1H), 4.97 (d, 4.0 Hz, 1H), 3.58 (s, 3H), 2.92 (m, 1H), 2.65-2.55 (m, 2H), 2.31 (m, 1H), 1.64 (s, 3H), 1.50 (s, 3H), 1.49 (s, 3H) ppm. $^{13}C{}^{1}H{}$ (d₆-dmso, 100 MHz): 198.0 (2 x CO), 197.7 (CO), 197.5 (CO), 190.4 (2 x CO), 154.8 (C), 154.7 (C), 154.3 (CH), 154.0 (C), 153.8 (C), 153.6 (CH), 146.2 (CH), 145.2 (CH), 140.8 (CH), 139.9 (C), 139.8 (C), 133.3 (CH), 132.4 (CH), 130.8 (C), 128.9 (CH), 128.5 (C), 128.4

(C), 125.2 (CH), 72.0 (C), 71.8 (C), 68.7 (CH), 68.4(CH), 41.9 (C), 41.7 (C), 39.1 (CH₂), 39.0 (CH₂), 38.0 (2 x CH₃), 21.4 (CH₃), 21.3 (CH₃), 16.8 (2 x CH₃), 13.7 (2 x CH₃) ppm. HRMS (ES): m/z 627.1177 (calc. 627.1173) [L]⁺, 100%.

Figure S31. ¹H NMR (d₆-acetone, 298 K, 400 MHz) spectrum of C-[Re(CO)₃(5-L^{Me}H)Cl]BF₄, C-Re-5^{Me}.

Figure S32. ¹³C{¹H} NMR (d₆-dmso, 298 K, 400 MHz) spectrum of *C*-[Re(CO)₃(5-L^{Me}H)Cl]BF₄, *C*-**Re-5^{Me}**.

Figure S33. ¹H NMR (d₆-acetone, 298 K, 400 MHz) spectrum of *C*-[Re(CO)₃(5-L^{Me}H)Cl]BF₄, *C*-Re-5^{Me}.

Figure S34. ¹H/¹H NMR (d₆-acetone, 298 K, 400 MHz) spectrum of *C*-[Re(CO)₃(5-L^{Me}H)Cl]BF₄, *C*-**Re-5**^{Me}.

Figure S35. ¹H/¹³C NMR (d₆-acetone, 298 K, 400 MHz) spectrum of *C*-[Re(CO)₃(5-L^{Me}H)Cl]BF₄, *C*-**Re-5**^{Me}.

Monoisotopic Mass, Odd and Even Electron Ions 74 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-23 H: 0-25 N: 0-4 O: 0-3 Cl: 0-1 187Re: 0-1													
22-Sep-2020 5AMMERE Cardiff Uni Synapt G2-Si PDN_MS30727_ESP 10 (0.114) 1: TOF MS ES+ 5.97e+005													
100 <u>605.42</u> 605.0	76 610.1 607.5 610.	848 <u>611.18</u> 0 612.5	<u>37</u> 614.4 615.0	1856 617.5	619.4338 620.0	625. 622.5	1157 627 625.0 (.1177 627.5	629.116 630.0	9 <u>_631.120</u> 632.5	00 635.0	<u>637.3073_6</u> 637.5	38.3068 640.0
Minimum: Maximum:		20.0	10.0	-1.5 50.0									
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Form	ula				
627.1177	627.1173	0.4	0.6	13.0	626.8	n/a	n/a	C23	H25 N4	03 Cl	187Re		

Figure S36. HRMS spectrum and data for C-[Re(CO)₃(5-L^{Me}H)Cl]BF₄, C-Re-5^{Me}.

Figure S37. Solid-state IR spectrum of C-[Re(CO)₃(5-L^{Me}H)Cl]BF₄, C-Re-5^{Me}.

2.7. C-[Re(CO)₃(6-L^{Me}H)Cl]BF₄, C-Re-6^{Me}.

This was prepared in the same manner as described for the $[4-L^{Me}H]BF_4$ derivative. The complex was crystallised as needle-like crystals upon vapour diffusion of pentane into an acetone solution of the complex. Yield = 67%. A second crop was obtained upon continued vapour diffusion. Yield = 8%.

¹H (CD₃CN, 400 MHz): 9.28 (s, 1H), 9.13 (ddd, 5.6, 1.6, 0.8, Hz, 1H), 8.51 (dd, 7.9, 1.0 Hz 1H), 8.47 (dt, 8.3, 0.8 Hz 1H), 8.39 (t, 8.2 Hz, 1H), 8.29 (td, 7.9, 1.5 Hz, 1H), 7.80 (dd, 8.3, 0.8 Hz, 1H), 7.78 (ddd, 7.7, 5.5, 1.1 Hz, 1H), 4.44 (d, 5.4 Hz, 1H), 3.40 (s, 3H), 2.83 (m, 1H), 2.55-2.40 (m, 2H), 2.15 (m, 1H), 1.47

(s, 3H), 1.33 (s, 3H), 1.23 (s, 3H) ppm. ¹³C{¹H} (d₆-acetone/d₆-dmso, 100 MHz): 196.7 (CO), 195.1 (CO), 188.4 (CO), 156.9 (CH), 156.5 (C), 156.1 (C), 155.5 (C), 153.0 (CH), 143.6 (CH), 140.8 (CH), 128.6 (CH), 125.8 (CH), 124.4 (CH), 123.0 (CH), 73.6 (C), 70.8 (CH), 41.6 (C), 38.3 (CH₂), 38.2 (CH₃), 31.2 (CH₂), 20.4 (CH₃), 15.9 (CH₃), 13.0 (CH₃) ppm. HRMS (ES): m/z 627.1174 (calc. 627.1173) [L]⁺, 100%.

Figure S38. ¹H NMR (CD₃CN, 298 K, 400 MHz) spectrum of C-[Re(CO)₃(6-L^{Me}H)Cl]BF₄, C-Re-6^{Me}.

Figure S39. ¹³C{¹H} NMR (d_6 -acetone/ d_6 -dmso, 298 K, 100 MHz) spectrum of C-[Re(CO)₃(6-L^{Me}H)CI]BF₄, C-**Re-6^{Me}**.

Figure S40. ¹H/¹H COSY NMR (CD₃CN, 298 K, 400 MHz) spectrum of *C*-[Re(CO)₃(6-L^{Me}H)Cl]BF₄, *C*-**Re-6**^{Me}.

Figure S41. ¹H/¹H NOESY NMR (CD₃CN, 298 K, 400 MHz) spectrum of *C*-[Re(CO)₃(6-L^{Me}H)Cl]BF₄, *C*-**Re-6**^{Me}.

Figure S42. ¹H/¹³C HSQC NMR (d₆-acetone + one drop d₆-dmso, 298 K, 400 MHz) spectrum of C-[Re(CO)₃(6-L^{Me}H)Cl]BF₄, C-**Re-6^{Me}**.

Monoisotopic 74 formula(e) Elements Us C: 0-23 H:	Mass, Odd and evaluated with ed: 0-25 N: 0-4 C	Even Ele 1 results v D: 0-3 C	ctron lons within limit l: 0-1 18	s (up to 5 7Re: 0-1	0 closest re	esults for	each mass)		
22-Sep-2020 6AMMERE Cardiff Uni Synapt G2- PDN_MS30726_ESP 10 (0.114) 1: TOF MS ES 5.59e+00										Uni Synapt G2-Si 1: TOF MS ES+ 5.59e+005
100 <u>612.1</u> 612.1	760 ^{613.1823615.1} 2.5 615.0	792 e 617.5	620.0	20.7814 622.5	625.115 625.0	627.1174 627.5	629. <u>1160</u> 63 630.0	0.1180632.1227 _{635.1442} 632.5 635.0	637.1467_638.144 637.5 640	9 641.1318 .0 642.5
Minimum: Maximum:		20.0	10.0	-1.5 50.0						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula		
627.1174	627.1173	0.1	0.2	13.0	624.9	n/a	n/a	C23 H25 N4 O3 Cl	187Re	

Figure S43. HRMS spectrum and data for C-[Re(CO)₃(6-L^{Me}H)Cl]BF₄, C-Re-6^{Me}.

Figure S44. Solid-state IR spectrum of C-[Re(CO)₃(6-L^{Me}H)Cl]BF₄, C-Re-6^{Me}.

2.8. C-[Re(CO)₃(6-L^{Mes}H)Cl]BF₄, C-Re-6^{Mes}.

This was prepared in the same manner as described for C-[Re(CO)₃(4-L^{Mes}H)Cl]BF₄, C-**Re-4^{Mes}**. Recrystallisaton was affected from acetone/pentane by vapour diffusion. Yield = 71%.

¹H (CD₂Cl₂, 400 MHz): 8.95 (d, 5.3 Hz, 1H), 8.40 (t, 7.9 Hz, 1H), 8.34 (d, 8.0 Hz 1H), 8.28 (s, 1H), 8.23 (d, 8.2 Hz, 1H), 8.09 (t, 7.9 Hz, 1H), 7.79 (d, 7.7 Hz, 1H), 7.56 (t, 6.6 Hz, 1H), 6.79 (s, 2H), 4.88 (d, 15.1 Hz, 1H), 4.70 (d, 15.1 Hz, 1H), 4.31 (d, 4.1 Hz, 1H), 3.01 (m, 1H), 2.71 (m, 1H), 2.41 (m, 1H), 2.15 (m, 1H), 1.51 (s, 3H), 1.34 (s, 3H), 1.31 (s, 3H) ppm. ¹³C{¹H} (CD₂Cl₂, 150 MHz): 197.5 (CO), 195.1 (CO), 188.0 (CO), 156.8 (C), 155.6 (C), 155.0 (CH), 154.6 (C), 152.6 (CH), 144.2 (CH), 140.0 (CH), 138.5 (C), 130.8 (C), 130.6 (CH), 128.0 (CH), 125.2 (CH), 124.9 (C), 124.7 (CH), 75.4 (C), 73.2 (CH), 49.9 (CH₂), 41.5 (C), 39.2 (CH₂), 31.7 (CH₂), 21.2 (CH₃), 20.6 (CH₃), 20.3 (CH₃), 17.9 (CH₃), 14.9 (CH₃) ppm. HRMS (ES): m/z 745.1945 (calc. 745.1955) [L]⁺, 100%.

Figure S45. ¹H NMR (CD₂Cl₂, 298 K, 400 MHz) spectrum of *C*-[Re(CO)₃(6-L^{Mes}H)Cl]BF₄, *C*-**Re-6^{Mes}**.

Figure S46. ¹³C{¹H} NMR (CD₂Cl₂, 298 K, 400 MHz) spectrum of *C*-[Re(CO)₃(6-L^{Mes}H)Cl]BF₄, *C*-Re-6^{Mes}.

Figure S47. ¹H/¹H COSY NMR (CD₂Cl₂, 298 K, 400 MHz) spectrum of *C*-[Re(CO)₃(6-L^{Mes}H)Cl]BF₄, *C*-**Re-6**^{Mes}.

Figure S48. ¹H/¹H NOESY NMR (CD₂Cl₂, 298 K, 400 MHz) spectrum of *C*-[Re(CO)₃(6-L^{Mes}H)Cl]BF₄, *C*-**Re-6**^{Mes}.

Figure S49. ¹H/¹³C HSQC NMR (CD₂Cl₂, 298 K, 400 MHz) spectrum of *C*-[Re(CO)₃(6-L^{Mes}H)Cl]BF₄, *C*-**Re-6**^{Mes}.

Minimum: Maximum:		5.0	5.0	-1.5 100.0					
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula	
745.1949	745.1955	-0.6	-0.8	17.0	657.4	n/a	n/a	C32 H35 N4 O3	Cl 187Re

Figure S50. HRMS spectrum and data for C-[Re(CO)₃(6-L^{Mes}H)Cl]BF₄, C-Re-6^{Mes}.

Figure S51. Solid-state IR spectrum of C-[Re(CO)₃(6-L^{Mes}H)Cl]BF₄, C-Re-6^{Mes}.

2.9. Δ-[Ir(Phpy)₂(4-L^{Me}H)](BF₄)₂.EtOEtOH, Δ-Ir-4^{Me}

A mixture of $[Ir(Phpy)_2(MeCN)_2](BF_4)$ (100 mg, 1.49 x 10⁻⁴ mmol) and $[4-L^{Me}H]BF_4$ (61 mg, 1 mol eq.) were heated in EtOEtOH (8 ml) at 100 °C under N₂ for 15 hrs. The cooled mixture was left to stand on the bench whereupon the compound precipitated as an orange solid. Yield = 115mg (71%). A second crystalline crop was obtained from the mother liquor on standing. Yield = 27mg (17%).

¹H (d₆-dmso, 400 MHz): 8.94 (s, 1H), 8.94 (obs, 1H), 8.81 (s, 1H), 8.39 (t, 7.9 Hz 1H), 8.29 (t, 7.3 Hz 2H), 8.00-7.90 (m, 5H), 7.81-7.75 (m, 3H), 7.71 (d, 5.6 Hz, 1H), 7.63 (d, 5.7 Hz, 1H), 7.19 (m, 2H), 7.05 (t, 7.4 Hz, 2H), 6.93 (m, 2H), 6.21 (dd, 7.5, 3.9 Hz, 2H), 4.39 (d, 4.3 Hz, 1H), 3.38 (s, 3H), 2.23 (m, 2H), 2.07 (m, 1H), 1.40 (s, 3H), 1.20 (s, 3H), 1.09 (s, 3H) ppm. ¹³C{¹H} (d₆-dmso, 100 MHz): 167.4 (C), 167.3

(C), 157.4 (C), 155.2 (C), 154.1 (CH), 151.0 (C), 150.6 (CH), 149.4 (CH), 144.2 (CH), 140.1 (C), 139.4 (CH), 131.5 (CH), 130.8 (CH), 129.8 (C), 125.6 (CH), 124.6 (CH), 124.3 (CH), 122.9 (CH), 120.6 (CH), 119.0 (CH), 115.5 (CH), 72.6 (C), 67.4 (CH), 41.9 (C), 39.0 (CH₂), 38.6 (CH₃), 31.0 (CH₂), 21.6 (CH₃), 16.7 (CH₃), 13.7 (CH₃) ppm. HRMS (ES): m/z 819.2920 (calc. 819.2931) [L]⁺, 100%.

Figure S52. ¹H NMR (d₆-dmso, 298 K, 400 MHz) spectrum of Δ-[Ir(Phpy)₂(4-L^{Me}H)](BF₄)₂, Δ-**Ir-4^{Me}**.

Figure S53. ¹³C{¹H} NMR (d₆-dmso, 298 K, 100 MHz) spectrum of Δ-[Ir(Phpy)₂(4-L^{Me}H)](BF₄)₂, Δ-**Ir-4^{Me}**.

Figure S54. ¹H/¹H COSY NMR (d₆-dmso, 298 K, 400 MHz) spectrum of Δ-[Ir(Phpy)₂(4-L^{Me}H)](BF₄)₂, Δ-**Ir-4**^{Me}.

Figure S55. 1 H/ 1 H NOESY NMR (d₆-dmso, 298 K, 400 MHz) spectrum of Δ -[Ir(Phpy)₂(4-L^{Me}H)](BF₄)₂, Δ -Ir-4^{Me}.

Figure S56. ¹H/¹³C HSQC NMR (d₆-dmso, 298 K, 400 MHz) spectrum of Δ-[Ir(Phpy)₂(4-L^{Me}H)](BF₄)₂, Δ-Ir-4^{Me}.

lr4LH

821.2946

XEVO-G2XSQTOF#NotSet Cardiff University

1: TOF MS ES+ 4.15e12

Figure S57. HRMS spectrum and data for Δ -[Ir(Phpy)₂(4-L^{Me}H)](BF₄)₂, Δ -Ir-4^{Me}.

2.10. Δ,Λ-[Ir(Phpy)₂(5-L^{Me}H)](BF₄)₂, Δ,Λ-Ir-5^{Me}

16-Mar-2021

100-

PDN_MS35110_ESP (0.053) Is (1.00,1.00) C42H40N6Ir

A mixture of $[Ir(Phpy)_2(MeCN)_2](BF_4)$ (100 mg, 1.49 x 10⁻⁴ mmol) and $[5-L^{Me}H]BF_4$ (61 mg, 1 mol eq.) were heated in EtOEtOH (8 ml) at 100 °C under N₂ for 15 hrs. The cooled mixture was left to stand on the bench whereupon a small amount of an orange-red solid deposited. Yield = 21 mg (13%). A crop was obtained from the mother liquor on standing. Yield = 30 mg (19%). The majority of the solid was precipitated as an orange solid upon the addition of water to the remaining mother liquor. Yield = 102 mg (63%).

¹H (d₆-dmso, 400 MHz): 9.02 (dd, 8.9, 3.5 Hz, 1H), 8.89 (dd, 8.1, 4.6 Hz, 1H), 8.56 (s, 1H), 8.41 (td, 9.1, 2.2 Hz 1H), 8.31 (m, 2H), 8.00-7.80 (m, 5H), 7.73 (m, 1H), 7.69 (t, 4.8 Hz, 1H), 7.63 (d, 4.7 Hz, 1H), 7.58 (t, 3.2 Hz, 1H), 7.20 (m, 2H), 7.07 (m, 2H), 6.96 (m, 2H), 6.31 (m, 1H), 6.20 (t, 7.1 Hz, 1H), 3.57 (d, 4.5 Hz, 1H), 3.35 (d, 5.3 Hz, 1H), 3.17 (s, 3H), 3.14 (s, 3H), 2.34 (m, 1H), 1.87 (m, 2H), 1.59 (m, 1H), 1.23 (s, 6H), 0.98 (s, 3H), 0.93 (s, 6H), 0.74 (s, 3H) ppm. ¹³C{¹H} (d₆-dmso, 100 MHz): 167.2 (C), 167.1 (C), 154.9 (C), 154.8 (C), 154.4 (CH), 154.3 (C), 153.9 (C), 153.6 (C), 150.7 (C), 150.6 (C), 150.5 (CH), 150.4 (CH), 150.1 (CH), 149.6 (CH), 144.6 (C), 144.5 (C), 144.3 (CH), 142.6 (CH), 141.5 (CH), 141.0 (CH), 140.7 (CH), 125.7 (CH), 125.6 (CH), 125.5 (CH), 124.7 (CH), 124.5 (CH), 123.0 (CH), 122.9 (CH), 120.7 (CH), 120.5 (CH), 72.3 (C), 72.0 (C), 68.9 (CH), 68.3 (CH), 41.8 (C), 41.4 (C), 38.9 (CH₂), 38.7 (CH₂), 38.0 (CH₃), 30.9 (CH₂), 30.5 (CH₂), 21.5 (CH₃), 21.4 (CH₃), 16.7 (CH₃), 16.5 (CH₃), 13.7 (CH₃), 13.6 (CH₃) ppm. HRMS (ES): m/z 819.2939 (calc. 819.2931) [L]⁺, 100%.

Figure S58. ¹H NMR (d₆-dmso, 298 K, 400 MHz) spectrum of Δ,Λ-[Ir(Phpy)₂(5-L^{Me}H)](BF₄)₂, Δ,Λ-Ir-5^{Me}.

Figure S59. ¹³C{¹H} NMR (d₆-dmso, 298 K, 100 MHz) spectrum of Δ,Λ-[Ir(Phpy)₂(5-L^{Me}H)](BF₄)₂, Δ,Λ-I**r-5**^{Me}.

Figure S60. ¹H/¹H COSY NMR (d₆-dmso, 298 K, 400 MHz) spectrum of Δ , Λ -[Ir(Phpy)₂(5-L^{Me}H)](BF₄)₂, Δ , Λ -I**r**-5^{Me}.

Figure S61. ¹H/¹H NOESY NMR (d₆-dmso, 298 K, 400 MHz) spectrum of Δ , Λ -[Ir(Phpy)₂(5-L^{Me}H)](BF₄)₂, Δ , Λ -Ir-5^{Me}.

Figure S62. ¹H/¹³C HSQC NMR (d₆-dmso, 298 K, 400 MHz) spectrum of Δ , Λ -[Ir(Phpy)₂(5-L^{Me}H)](BF₄)₂, Δ , Λ -Ir-5^{Me}.

Figure S63. HRMS spectrum and data for Δ , Λ -[Ir(Phpy)₂(5-L^{Me}H)](BF₄)₂, Δ , Λ -Ir-5^{Me}.

Figure S64. CD spectra of the ligands recorded in CH₂Cl₂. Series 1 (blue): [6-L^{Me}H]BF4; Series 2 (orange): [5-L^{Me}H]BF4; Series 3 (grey): [4-L^{Me}H]BF₄; Series 4 (yellow): [6-L^{Mes}H]BF₄.

Figure S65. Electronic spectra of the ligands recorded in CH₂Cl₂. Series 1 (blue): [6-L^{Me}H]BF₄; Series 2 (orange): [5-L^{Me}H]BF₄; Series 3 (grey): [4-L^{Me}H]BF₄; Series 4 (yellow): [6-L^{Mes}H]BF₄.

Figure S66. CD spectra of $[Re(CO)_3(6-L^{Me}H)CI]BF_4$ (series 1, blue), $[Re(CO)_3(5-L^{Me}H)CI]BF_4$ (series 2, orange), $[Re(CO)_3(4-L^{Me}H)CI]BF_4$ (series 3, grey) and $[Re(CO)_3(6-L^{Mes}H)CI]BF4$ (series 4, yellow) recorded in CH_2CI_2 .

Figure S67. Electronic spectra of the rhenium complexes recorded in CH_2Cl_2 . Series 1 (blue): [Re(CO)₃(6-L^{Me}H)Cl]BF₄; Series 2 (orange): [Re(CO)₃(5-L^{Me}H)Cl]BF₄; Series 3 (grey): [Re(CO)₃(4-L^{Me}H)Cl]BF₄; Series 4 (yellow): [Re(CO)₃(6-L^{Mes}H)Cl]BF₄.

Figure S68. CD spectra of the iridium complexes recorded in CH₂Cl₂. Series 1 (blue): Δ , Λ -[Ir(Phpy)₂(5-L^{Me}H)](BF₄)₂; Series 2 (orange): Δ -[Ir(Phpy)₂(4-L^{Me}H)](BF₄)₂.

Figure S69. Electronic spectra of the iridium complexes recorded in CH_2Cl_2 . Series 1 (blue): Δ , Λ -[Ir(Phpy)₂(5-L^{Me}H)](BF₄)₂; Series 2 (orange): Δ -[Ir(Phpy)₂(4-L^{Me}H)](BF₄)₂.

Table S1. Crystal data and structure refinement for C-[Re(CO)₃(6-L^{Me}H)Cl_{0.9}l_{0.1}]I, C-[Re(CO)₃(6-L^{Me}H)Cl](Cl)_{0.64}.(BF₄)_{0.36} and Δ -[Ir(Phpy)₂(4-L^{Me}H)](BF₄)₂.

Compound (Identification	<i>C</i> -[Re(CO) ₃ (6-	C-[Re(CO) ₃ (6-	Δ -[Ir(Phpy) ₂ (4-
code)	$L^{Me}H)Cl_{0.9}I_{0.1}]I$	L ^{Me} H)Cl](Cl) _{0.64} .(BF ₄) _{0.36}	$L^{Me}H)](BF_4)_2$
CCDC reference	2098556	2098557	2098558
Empirical formula	$C_{23}H_{29}Cl_{0.9}N_4O_5I_{1.1}Re$	$C_{38}H_{47}B_{0.36}F_{1.44}N_4O_5Cl_{1.64}Re$	$C_{46}H_{53}B_2F_8N_6O_3Ir$
Formula weight	799.65	915.56	1103.76
Temperature /K	298(2)	293(2)	296(2)
Wavelength /Å	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	P 2 ₁	P 2 ₁	P 2 ₁
a/Å	9.9804(3)	9.5272(3)	8.58820(10)
b/Å	10.6322(3)	11.1664(3)	13.3127(2)
c/Å	12.5079(4)	19.1835(5)	20.2920(3)
α/°	90	90	90
β/°	92.751(3)	97.194(3)	90.6720(10)
γ/°	90	90	90
Volume/Å ³	1325.73(7)	2024.76(10)	2319.87(6)
Ζ	4	4	2
Density (calculated)/ Mgm ⁻³		1.502	1.580
Absorption coefficient/ mm ⁻¹	6.000	3.161	6.258
S1Crystal size/ mm ³	0.194x0.081x0.061	0.460x0.092x0.063	0.192 x 0.152 x 0.139
Reflections collected	13244	33296	23557
Independent reflections	6236	10036	9669
R(int)	0.0276	0.0407	0.0317
Data / restraints / parameters	6236 / 25 / 330	10036 / 356 / 544	9669 / 488 / 694
Goodness-of-fit on F ²	1.044	1.095	1.043
R1, wR2 [I>2σ(I)]	0.0299, 0.0538	0.0410, 0.1036	0.0286, 0.0735
R1, wR2 (all data)	0.0354, 0.0565	0.0479, 0.1084	0.0300, 0.0748
Absolute structure parameter	-0.028(4)	-0.006(5)	-0.031(4)
Largest diff. peak and hole	1.024 and -1.115	1.749 and -0.818	1.556 and -0.756
e.A ⁻³			

Figure S70. A 50% probability $Ortep^3$ representation of the molecular structure of C-[Re(CO)₃(6-L^{Me}H)Cl_{0.9}l_{0.1}]⁺ with hydrogen atoms, solvent molecules and counterion omitted.

Figure S71. A 50% probability $Ortep^3$ representation of the molecular structure of C-[Re(CO)₃(6-L^{Mes}H)Cl]⁺ with hydrogen atoms, solvent molecules and counterions omitted.

Figure S72. A 50% probability $Ortep^3$ representation of the molecular structure of Δ -[Ir(Phpy)₂(4- L^{Me}H)]²⁺ with hydrogen atoms, solvent molecules and counterions omitted.

References

1) Sheldrick, G. M. A short history of SHELX Acta Crystallogr. A 2008, 64, 112-122.

2) M. Uzarewicz-Baig, M. Koppenwallner, S. Tabassum and R. Wilhelm, *Appl. Organometal. Chem.*, 2014, **28**, 552-558.

3) L. J. Farrugia, J. Appl. Cryst. 2012, 45, 849-854.