Supporting Information

Uranyl phosphonates: crystalline materials and nanosheets for

temperature sensing

Ge-Hua Wen,^a Xiu-Mei Chen,^b Kui Xu,^a Xiaoji Xie,^b Song-Song Bao,^{a*} and Li-Min Zheng*^a

Bond	Length [Å]	Bond	Length [Å]
U1–06	1.763(3)	06A-U1-01A	90.41(13)
U1–06A	1.763(3)	06–U1–O2B	88.91(13)
U1–01	2.299(3)	O6A-U1-O2B	91.09(13)
U1–01A	2.299(3)	01–U1–O2B	89.35(11)
U1–O2B	2.338(3)	01A–U1–O2B	90.65(11)
U1–02C	2.338(3)	06–U1–O2C	91.09(13)
06–U1–01	90.41(13)	06A-U1-02C	88.91(13)
06A-U1-01	89.59(13)	01–U1–02C	90.65(11)
06-U1-01A	89.59(13)	01A-U1-02C	89.35(11)

 Table S1.
 Selected bond lengths (Å) and angles (°) for 1.

Symmetric codes for **1**: A: -x+2, -y+1, -z; B: x+1, y, z; C: -x+1, -y+1, -z.

 Table S2.
 The parameters of H-bonding for 1.

D-H…A	d _{H…A} (Å)	d _{D···A} (Å)	Angle _{D-H···A} (°)
O5-H5…O2ª	2.08	2.919(5)	176.5
013-H13…O4ª	1.88	2.588(5)	140.4
C4-H4…O6 ^b	2.68	3.381(6)	131.5
C5-H5A…O5 ^c	2.91	3.843(6)	167.4

Symmetric codes for **1**: a: -x+1, -y+1, -z+1; b: x, -1+y, z; c: 2-x, -y, 1-z.

Bond	Length [Å]	Bond	Length [Å]
U1-01	2.511(6)	06–U1–O3	156.6(2)
U1-03	2.511(6)	01A-U1-03	66.0(2)
U1-04	1.771(7)	03A-U1-03	121.81(17)
U1-05	1.770(7)	01–U1–O3	56.8(2)
U1-06	2.221(7)	010–U2–O9	178.6(3)
U1-01A	2.364(7)	010–U2–O8	91.9(3)
U1-03B	2.374(7)	09–U1–08	89.1(3)
U2–O8	2.313(7)	010–U2–07C	91.0(3)
U2-09	1.788(7)	09–U2–07C	88.5(3)
U2–O10	1.757(7)	08–U2–07C	157.4(2)
U2–07C	2.322(7)	09–U2–O2B	92.7(3)
U2–O2B	2.325(6)	08–U2–O2B	79.1(2)
U2-011D	2.455(7)	07c–U2–O2B	78.6(2)
U2–012D	2.511(7)	010–U2–O11B	88.0(3)
05–U1–O4	177.6(3)	09–U2–011D	91.3(3)
05–U1–O6	93.1(3)	08–U2–O11D	74.5(2)
04–U1–O6	89.1(3)	07c–U2–011D	128.0(2)
05–U1–O1A	89.0(3)	O2b-U2-011D	153.2(3)
04–U1–O1A	90.1(3)	010–U2–012D	89.3(3)
06–U1–O1A	90.8(2)	09–U2–012D	89.3(3)
05–U1–O3A	85.4(3)	08–U2–012D	126.6(2)
04–U1–O3B	95.8(3)	07c–U2–012D	75.8(2)
06–U1–O3B	81.6(2)	O2b-U2-O12D	154.3(2)
01a–U1–O3B	170.2(2)	011d-U2-012D	52.2(2)
05–U1–O1	93.2(3)	010-U2-016D	84.2(3)
04–U1–O1	85.4(3)	09–U2–O16D	94.6(3)
06–U1–O1	146.1(2)	08–U2–O16D	100.6(3)
01a–U1–O1	122.63(18)	07c–U2–016D	102.0(3)
03b-U1-01	65.8(2)	O2b-U2-O16D	172.7(3)
05–U–O3	88.7(3)	011d-U2-016D	26.2(3)
04–U1–O3	88.9(3)	012d-U2-016D	26.6(3)

 Table S3.
 Selected bond lengths (Å) and angles (°) for 2.

Symmetric codes for **2**: A: -x+1, y+1/2, -z+1/2; B: -x+1, y-1/2, -z+1/2; C: x, y-1, z; D: -x+1, -y+1, -z+1.

Table S4. The parameters of H-bonding for 2.

D-H…A	d _{H···A} (Å)	d _{D…A} (Å)	Angle _{D-H···A} (°)
01W-H1WA…09	2.01	2.884(12)	151.6
01W-H1WB…011	2.01	2.896(12)	154.8
O1W-H1WC…O7 ^a	2.05	2.979(11)	166.7
014-H14…013 ^b	1.77	2.603(12)	170.5

Symmetric codes for **2**: a: -x+1, -y+1, -z+1; b: -x+2, -y+1, -z+1.

Sample	1		:	2
	P content	Dissociation	P content	Dissociation
	(mg/L)	degree (%)	(mg/L)	degree (%)
pH=1	0.289	1	0.538	2.6
pH=4	0.320	1.1	0.017	0.08
pH=8	0.318	1.1	0.019	0.09
pH=10	0.434	1.5	0.141	0.7
HNO₃	7.68	8.8	3.05	5.0
H ₂ SO ₄	0.73	3	0.76	1.2
aqua regia	22.4	25.8	9.1	14.7

 Table S5. Inductively Coupled Plasm (ICP) analysis of 1 and 2 in the different aqueous solution.

1 mg of sample **1** or **2** was soaked in aqueous solution (3 mL) at variable pH (pH = 1, 4, 8, 10) for 24 h. After centrifuge (rpm 14000) and filter (Syringe filters, aperture: 0.22μ m) of the mixture, the concentrations of P element in the filtrate were detected by ICP technique. 1 mg of sample **1** or **2** was soaked in fuming acids (1 mL), then tested by ICP after dilution ten times, the above values has been multiplied by ten.

1	τ₁(μs)	τ ₂ (μs)	$ au_{\text{average}}$ (µs)	χ^2
77К	388.1, 30.3%	1110.1, 69.7%	891.2	1.10
300K	266.5, 28.7%	748.6, 71.3%	610.3	1.17
1-ns@PMMA	τ ₁ (μs)	τ ₂ (μs)	$ au_{average}$ (µs)	χ^2
77K	310.4, 32.5%	1078.3,67.5%	828.5	1.10
300K	234.0, 29.5%	827.8, 70.5%	652.5	1.02
2	τ ₁ (μs)	τ ₂ (μs)	$ au_{average}$ (µs)	χ^2
77К	35.6, 51.7%	113.6, 48.3%	73.2	1.11
2-ns@PMMA	τ ₁ (μs)	τ ₂ (μs)	$ au_{average}$ (µs)	χ^2
77K	20.3, 59.4%	81.5, 40.6%	45.1	1.19

Table S6. The lifetime fit parameters of 1, 2, 1-ns@PMMA and 2-ns@PMMA.

The fluorescence decay curve fitted by double-exponential function (eqn (1)) at different temperatures, respectively. The average lifetime is calculated using eqn (2).

$$I_{(t)} = A + B_1 \exp(-t/\tau_1)^{-1} + B_2 \exp(-t/\tau_2)^{-1}$$
(1)
(t) = $(B_1 \tau_1^2 + B_2 \tau_2^2)/(B_1 \tau_1 + B_2 \tau_2)$ (2)

Materials	Temp. range [K]	Max. Sm % K ⁻¹	References
TbMOF@7.3%Eu_tfac	200–325	1.33	1
ZJU-88⊃perylene	293-353	1.28	2
Eu _{0.0069} Tb _{0.9931} DMBDC	50-200	1.15	3
{[Tb(cpbOH)(H₂O)₂](cpb)}∞	180-280	1.84	4
{[Eu(cpbOH)(H₂O)₂](cpb)}∞	180-280	1.40	
Tb _{0.9} Eu _{0.1} PIA	100-300	3.27	5
Tb _{0.99} Eu _{0.01} (BDC) _{1.5} (H ₂ O) ₂	290-320	0.31	6
Tb _{0.8} Eu _{0.2} BPD	298-318	1.19	7
[Eu _{0.7} Tb _{0.3} (cam)(Himdc) ₂ (H ₂ O) ₂] ₃	100-450	0.11	8
TbDyCo-MOF	120–200	2.2(3)	9
Na@U ₆ P ₆	200-300	0.79	10
1	120-300	0.9	This work
2	100-300	2.16	This work
2-ns@PMMA	100-300	1.19	This work

Table S7. Comparison of the thermometer performance of **1**, **2** and **2-ns@PMMA** with some reported CP materials.

References

- 1. A. M. Kaczmarek, Y.-Y. Liu, C. Wang, B. Laforce, L. Vincze, P. V. D. Voort and R. V. Deun, *Dalton Trans.*, 2017, **46**, 12717-12723.
- Y. Cui, R. Song, J. Yu, M. Liu, Z. Wang, C. Wu, Y. Yang, Z. Wang, B. Chen and G. Qian, *Adv. Mater.*, 2015, 27, 1420-1425.
- 3. Y. J. Cui, H. Xu, Y. F. Yue, Z. Y. Guo, J. C. Yu, Z. X. Chen, J. K. Gao, Y. Yang, G. D. Qian and B. L. Chen, *J. Am. Chem. Soc.*, 2012, **134**, 3979.
- 4. X. Fan, S. Freslon, C. Daiguebonne, L. L. Pollès, G. Calvez, K. Bernot, X. Yi, G. Huang, and O. Guillou, *Inorg. Chem.*, 2015, **54**, 5534–5546.
- X. T. Rao, T. Song, J. K. Gao, Y. J. Cui, Y. Yang, C. D. Wu, B. L. Chen and G. D. Qian, *J. Am. Chem. Soc.*, 2013, 135, 15559.
- 6. A. Cadiau, C. D. S. Brites, P. M. F. J. Costa, R. A. S. Ferreira, J. Rocha and L. D. Carlos, ACS Nano, 2013, 7, 7213.
- 7. D. Zhao, X. Rao, J. Yu, Y. Cui, Y. Yang and G. Qian, *Inorg. Chem.*, 2015, 54, 11193–11199.
- 8. Y. Q. Wei, R. J. Sa, Q. H. Li and K. C. Wu, *Dalton Trans.*, 2015, 44, 3067.
- 9. K. Kumar, S. Chorazy, K. Nakabayashi, H. Sato, B. Sieklucka and S.-I. Ohkoshi, J. Mater. Chem. C, 2018, 6, 8372-8384.
- 10. D. Wang, Q. Tan, J. Liu and Z. Liu, *Dalton Trans.*, 2016, **45**, 18450 18454.
- 11. H.-Y. Wang, X.-Y. Zheng, L.-S. Long, X.-J. Kong, and L.-S. Zheng. *Inorg. Chem.*, 2021, **60**, 6790–6795.

Fig. S1 Simulated and experimental PXRD patterns of 1.

Fig. S2 Simulated and experimental PXRD patterns of 2.

Fig. S3 The IR spectra of **1** and **2**. The peaks between 3390 cm⁻¹ and 2962 cm⁻¹ are assigned to the stretch of O-H from phosphonates and carboxylates. The peaks at 1000-1200 cm⁻¹ are assigned to symmetric and asymmetric stretching vibrations of P-O and P=O. The peak at 930 cm⁻¹ is assigned to the stretching vibration of U=O.

Fig. S4 Thermogravimetric analysis of 1 and 2.

Fig. S5 The PXRD patterns of simulated 1 and 1-ns@PMMA film.

Fig. S6 The PXRD patterns of simulated 2 and 2-ns@PMMA film.

Fig. S7 View of compound **1**. Displacement ellipsoids are drawn at the 30% probability. level. A: - x+2, -y+1, -z; B: x+1, y, z; C: -x+1, -y+1, -z.

Fig. S8 The PXRD patterns for compound 1 after soaking in different acidic solution for 24 h.

Fig. S9 The PXRD patterns for compound 2 after soaking in different acidic solution for 24 h.

Fig. S10 The PXRD patterns of **1** and **2**, which represents the pristine sample dispersed in a pH = 11 solution, and the precipitate produced after adjusting pH = 2.

Fig. S11 The PXRD patterns of simulated **1** and **1-ns**, **1-ns** was obtained by volatilize the acetone solvent after freeze-thaw process.

Fig. S12 The PXRD patterns of simulated **2** and **2-ns**, **2-ns** was obtained by volatilize the acetone solvent after freeze-thaw process.

Fig. S13 The IR spectra of **1** and **1-ns, 1-ns** was obtained by volatilize the acetone solvent after freeze-thaw process.

Fig. S14 The IR spectra of **2** and **2-ns**, **2-ns** was obtained by volatilize the acetone solvent after freeze-thaw process.

Fig. S15 Absorption spectra of 2-pmbH₃, 1 and 2.

Fig. S16 Solid-state emission spectra of **1** and **1-ns** under excitation at 310 and 412 nm at room temperature.

Fig. S17 a-c) Relative sensitivity of **1** in the 120–300 K range, **2** and **2-ns@PMMA** in the 100– 300 K range. b-d) The minimum temperature uncertainty calculated from the sensitivity curve for $\delta \Delta / \Delta = 0.5\%$ ($\Delta = I_{(T)}/I_0$). The solid line represents the temperature uncertainty δT < 0.5 K.

Fig. S18 Luminescence decay curves of 1 at 77K and 300K. (λ_{em} = 522 nm)

Fig. S19 Luminescence decay curves of 1-ns@PMMA at 77K and 300K. (λ_{em} = 522 nm)

Fig. S20 Luminescence decay curves of 2 and 2-ns@PMMA at 77K. (λ_{em} = 522 nm)

Fig. S21 Emission intensity of 1 at 522 nm in cycles of heating and cooling.