Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Immobilizing CsPbBr₃ perovskite nanocrystals on nanoporous carbon powder for visible-light-driven CO₂ photoreduction

Ying Jiang, Cunxin Mei, Zhijie Zhang,* Zhongliang Dong

School of Materials Science and Engineering, Shanghai Institute of Technology, 100 Haiquan Road,

Shanghai, 201418, P. R. China

*Corresponding author. *Email address*: zjzhang@sit.edu.cn (Z. J. Zhang)

Fig. S1 N_2 adsorption-desorption isotherms of NCP and the CsPbBr₃/NCP hybrid. Inset: pore size distribution of the samples.

Fig. S2 Control photocatalytic experiments using CsPbBr₃/NCP as catalysts under different conditions: with CO₂ under dark condition; with Ar under light irradiation; and with CO₂ under light irradiation.

Fig. S3 Mass spectra showing ^{13}CO (m/z=29) and $^{13}CH_4$ (m/z=17) produced over CsPbBr₃/NCP in the photocatalytic reduction of $^{13}CO_2$.

Fig. S4 Photocatalytic durability test on pristine CsPbBr₃ NCs with four 4 h cycle.

Fig. \$5 XRD pattern of the post-reaction CsPbBr₃/NCP hybrid.

Fig. S6 TEM image of the post-reaction CsPbBr₃/NCP hybrid.