< Electronic Supplementary Information >

Straightforward formation of dianionic acetonylate: self-assembly of mercury(II) with pyridyl donor ligands in acetone

Kangsan Hong, ${ }^{\text {a }}$ Sangwoo Lim, ${ }^{a}$ Heehun Moon, ${ }^{a}$ Dongwon Kim, ${ }^{a}$ Dongwook Kim ${ }^{\text {b }}$ and OkSang Jung*,a
${ }^{\text {a }}$ Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
${ }^{\mathrm{b}}$ Center for Hydrocarbon Functionalizations, IBS, Daejon 34141, Republic of Korea
Fax: (+82) 51-5163522; Tel: (+82) 51-5103240; E-mail: oksjung@pusan.ac.kr

Experimental Procedures

Materials and Measurements.

All of the chemicals including mercury(II) perchlorate, 3-bromopyridine, and n-butyllithium (Aldrich) and 1,3-bis(chlorodimethylsilyl)propane (Gelest) were used without further purification. Naphthalene-2,6-diyl diisonicotinate (L*) was synthesized according to the literature. ${ }^{1}{ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian Mercury Plus 400 MHz (chemical shifts are relative to tetramethylsilane [TMS] as internal standard in δ values [ppm]). ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a AVANCE NEO 500. ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C} 2 \mathrm{D}-\mathrm{HMBC}$ NMR, and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ 2D-HMQC NMR spectra were recorded on an Agilent NMR System 600. Infrared spectra were obtained on a Nicolet 380 FT-IR spectrophotometer with samples prepared as KBr pellets. Thermal analyses were carried out under N_{2} at a scan rate of $10^{\circ} \mathrm{C} / \mathrm{min}$ using a Labsys TGA-DSC 1600.

Synthesis of 1,3-Bis(dimethyl(pyridin-3-yl)silyl)propane (L).

To a solution of 3-bromopyridine ($6.32 \mathrm{~g}, 40 \mathrm{mmol}$) in dry diethyl ether (100 mL) under a nitrogen gas atmosphere, n-butyllithium (16 mL of 2.5 M solution in n-hexane, 40 mmol) was added dropwise at $-78^{\circ} \mathrm{C}$. The resultant mixture was stirred for 90 min at $0^{\circ} \mathrm{C}$. Then, $1,3-$ bis(chlorodimethylsilyl)propane ($4.59 \mathrm{~g}, 20 \mathrm{mmol}$) in dry diethyl ether (50 mL) was slowly added to the above brown suspension at $-78^{\circ} \mathrm{C}$, and then the reaction mixture was stirred for 12 h at room temperature. Distilled water (200 mL) was added, and then the organic layer was separated. The crude product was purified by column chromatography using a mixture of ethyl acetate and n-hexane as an eluent. The solvent was evaporated to obtain a yellowish brown viscous liquid in a 76% yield (4.78 g). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{Si}_{2}$: C, 64.91; H, 8.34; N, 8.91\%. Found: C, 64.20; H, 8.36; N, 8.77\%. IR (KBr pellet, cm^{-1}): 3028 (m), 2963 (m), 2913 (m), 1571 (m), 1473 (w), 1392 (s), 1330 (w), 1253 (s), 1122 (s), 1027 (m), 907 (s), 809 (s), 798 (s), 770 (s), $490(\mathrm{~m}) .{ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}, 400 \mathrm{MHz}, \mathrm{ppm}$): 8.60 (s, 2H), 8.54 (d, $J=$ $4.63 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~m}, J=11.26 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=13.38 \mathrm{~Hz}, 2 \mathrm{H}), 1.33(\mathrm{~m}, J=32.39 \mathrm{~Hz}$, $2 \mathrm{H}), 0.80(\mathrm{~m}, J=16.26 \mathrm{~Hz}, 4 \mathrm{H}), 0.23(\mathrm{~s}, 12 \mathrm{H})$.

$\left[\mathrm{Hg}_{4}\left(\mathrm{ClO}_{4}\right)_{4}\left(\mathrm{CH}_{2} \mathrm{COCH}_{2}\right)_{2} \mathrm{~L}_{2}\right] \cdot \mathrm{CH}_{3} \mathrm{COCH}_{3}$.

An acetone solution $(2.0 \mathrm{~mL})$ of $\mathrm{Hg}\left(\mathrm{ClO}_{4}\right)_{2}(7.99 \mathrm{mg}, 0.02 \mathrm{mmol})$ was carefully layered onto a diethyl ether solution of $\mathrm{L}(12.56 \mathrm{mg}, 0.02 \mathrm{mmol})$. After 1 weeks, white crystals suitable for X-ray single crystallography were obtained in a 70\% yield. Anal. Calcd for $\mathrm{C}_{43} \mathrm{H}_{66} \mathrm{Cl}_{4} \mathrm{Hg}_{4} \mathrm{~N}_{4} \mathrm{O}_{19} \mathrm{Si}_{4}$: C, $25.83 \mathrm{H}, 3.32$; N, 2.80\%. Found: C,25.70; H,3.34; N,2.82\%. IR (KBr pellet, cm^{-1}): 3485(b), 2914(m), 1719(m), 1615(m), 1593(w), 1404(m), 1250(m), 1090(s), $906(\mathrm{~m}), 826(\mathrm{~m}), 700(\mathrm{~m}), 625(\mathrm{w}), 528(\mathrm{w}), 470(\mathrm{w}) .{ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-d_{6}, 400 \mathrm{MHz}$, ppm): 8.77 (m, $J=17.39 \mathrm{~Hz}, 4 \mathrm{H}), 8.35(\mathrm{~d}, J=7.25 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=13.13 \mathrm{~Hz}, 2 \mathrm{H}), 2.77$ $(\mathrm{s}, 2 \mathrm{H}), 2.73(\mathrm{~s}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~m}, J=30.26 \mathrm{~Hz}, 2 \mathrm{H}), 0.84(\mathrm{~m}, J=28.85 \mathrm{~Hz} 4 \mathrm{H})$, 0.30 (s, 12H).

$\left[\mathrm{Hg}_{4}\left(\mathrm{ClO}_{4}\right)_{4}\left(\mathrm{CD}_{2} \mathrm{COCD}_{2}\right)_{2} \mathrm{~L}_{2}\right] \cdot \mathrm{CD}_{3} \mathrm{COCD}_{3}$.

An acetone $-d_{6}$ solution $(2.0 \mathrm{~mL})$ of $\mathrm{Hg}\left(\mathrm{ClO}_{4}\right)_{2}(7.99 \mathrm{mg}, 0.02 \mathrm{mmol})$ was carefully layered
onto a diethyl ether solution of $\mathrm{L}(12.56 \mathrm{mg}, 0.02 \mathrm{mmol})$. After 1 weeks, white crystals suitable for X-ray single crystallography were obtained in a 67% yield. Anal. Calcd for $\mathrm{C}_{43} \mathrm{H}_{58} \mathrm{D}_{8} \mathrm{Cl}_{4} \mathrm{Hg}_{4} \mathrm{~N}_{4} \mathrm{O}_{19} \mathrm{Si}_{4}$: C, $25.83 \mathrm{H}, 3.71$; N, 2.79\%. Found: C,25.70; H,3.64; N,2.82\%. IR (KBr pellet, cm^{-1}): $3264(\mathrm{~b}), 2916(\mathrm{~b}), 1710(\mathrm{~m}), 1617(\mathrm{~m}), 1593(\mathrm{~m}), 1402(\mathrm{~m}), 1252(\mathrm{~m})$, 1090(s), $906(\mathrm{~m}), 826(\mathrm{~m}), 702(\mathrm{w}), 628(\mathrm{~m}), 460(\mathrm{w}) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{Me}_{2} \mathrm{SO}-d_{6}, 400 \mathrm{MHz}, \mathrm{ppm}\right)$: $8.74(\mathrm{~m}, J=5.50 \mathrm{~Hz}, 4 \mathrm{H}), 8.24(\mathrm{~d}, J=8.38 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=10.76 \mathrm{~Hz}, 2 \mathrm{H}), 1.32(\mathrm{~m}, J=$ $27.89 \mathrm{~Hz}, 2 \mathrm{H}), 0.84(\mathrm{~m}, J=24.76 \mathrm{~Hz}, 4 \mathrm{H}), 0.28$ (s, 12H).

$\left[\mathrm{Hg}_{2}\left(\mathrm{ClO}_{4}\right)_{2}\left(\mathrm{CH}_{2} \mathrm{COCH}_{3}\right)_{2} \mathrm{~L}^{*}\right] \cdot \mathrm{CH}_{3} \mathrm{COCH}_{3}$.

An acetone solution $(2 \mathrm{~mL})$ of $\mathrm{Hg}\left(\mathrm{ClO}_{4}\right)_{2}(3.99 \mathrm{mg}, 0.01 \mathrm{mmol})$ was slowly diffused into a dichloromethane solution (2 mL) of $\mathrm{L}^{*}(3.70 \mathrm{mg}, 0.01 \mathrm{mmol})$. Colorless crystals of $\left[\mathrm{Hg}_{2}\left(\mathrm{ClO}_{4}\right)_{2}\left(\mathrm{CH}_{2} \mathrm{COCH}_{3}\right)_{2} \mathrm{~L}^{*}\right] \cdot \mathrm{CH}_{3} \mathrm{COCH}_{3}$ formed at the interface and were obtained in 3 days in a 74% yield. Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{Hg}_{2} \mathrm{~N}_{2} \mathrm{O}_{15}$: C, $32.60 ; \mathrm{H}, 2.64 ; \mathrm{N}, 2.45 \%$. Found: C, 32.07 ; H, 2.45; N, 2.59\%. IR (KBr, cm ${ }^{-1}$): 1737(s, C=O), 1666(m), 1429(m), 1361(m), 1278(s), 1209(s), 1143(s), 1083(s), 1058(s), 1058(s), 622(s). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}, \mathrm{ppm}\right): 9.03$ (d, $J=$ $6.26 \mathrm{~Hz}, 4 \mathrm{H}), 8.31(\mathrm{~d}, J=6.26 \mathrm{~Hz}, 4 \mathrm{H}), 8.13(\mathrm{~d}, J=8.61 \mathrm{~Hz}, 2 \mathrm{H}), 8.02(\mathrm{~s}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.61$ $\mathrm{Hz}, 2 \mathrm{H}), 2.73(\mathrm{~s}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H})$.

Crystal Structure Determination.

All X-ray data of $\left[\mathrm{Hg}_{4}\left(\mathrm{ClO}_{4}\right)_{2}-\left(\mathrm{CH}_{2} \mathrm{COCH}_{2}\right) \mathrm{L}_{2}\right] \cdot \mathrm{CH}_{3} \mathrm{COCH}_{3},\left[\mathrm{Hg}_{4}\left(\mathrm{ClO}_{4}\right)_{2}\left(\mathrm{CD}_{2} \mathrm{COCD}_{2}\right) \mathrm{L}_{2}\right]$ $\cdot \mathrm{CD}_{3} \mathrm{COCD}_{3}$, and $\left[\mathrm{Hg}_{2}\left(\mathrm{ClO}_{4}\right)_{2}\left(\mathrm{CH}_{2} \mathrm{COCH}_{3}\right)_{2} \mathrm{~L}^{*}\right] \cdot \mathrm{CH}_{3} \mathrm{COCH}_{3}$ were collected on a Bruker SMART automatic diffractometer with graphite-monochromated Mo K α radiation ($\lambda=$ $0.71073 \AA$). Thirty-six (36) frames of 2D diffraction images were collected and processed to obtain the cell parameters and orientation matrix. The data were corrected for Lorentz and polarization effects. The absorption effects were corrected using the multi-scan method (SADABS). ${ }^{2}$ The structures were solved using the direct method (SHELXS) and refined by full-matrix least squares techniques (SHELXL 2018/3). ${ }^{3}$ The non-hydrogen atoms were refined anisotropically, and the hydrogen atoms were placed in calculated positions and refined only for the isotropic thermal factors. The crystal parameters and procedural information corresponding to the data collection and structure refinement are listed in Tables S1 and S2. The volumes of solvate molecules in $\left[\mathrm{Hg}_{4}\left(\mathrm{ClO}_{4}\right)_{4}\left(\mathrm{CH}_{2} \mathrm{COCH}_{2}\right)_{2} \mathrm{~L}_{2}\right] \cdot \mathrm{CH}_{3} \mathrm{COCH}_{3}$, $\left[\mathrm{Hg}_{4}\left(\mathrm{ClO}_{4}\right)_{4}\left(\mathrm{CD}_{2} \mathrm{COCD}_{2}\right)_{2} \mathrm{~L}_{2}\right] \cdot \mathrm{CD}_{3} \mathrm{COCD}_{3}$, and $\left[\mathrm{Hg}_{2}\left(\mathrm{ClO}_{4}\right)_{2}\left(\mathrm{CH}_{2} \mathrm{COCH}_{3}\right)_{2} \mathrm{~L}^{*}\right] \cdot \mathrm{CH}_{3} \mathrm{COCH}_{3}$ were $8.8 \%\left(269.6 \AA^{3} / 3055.8 \AA^{3}\right)$, $7.0 \%\left(215.5 \AA^{3} / 3061.8 \AA^{3}\right)$ and $13.4 \%\left(120.7 \AA^{3} / 899.8 \AA^{3}\right)$ respectively, on the basis of PLATON/SOLV calculation, ${ }^{4}$ and their all solvate molecules were squeezed.

References

1 L. Yang, D. Kim, S. Hyun, Y.-A. Lee and O.-S. Jung, Transit. Met. Chem., 2020, 45, 139-145.
2 G. M. Sheldrick, Program for empirical absorption correction of area detector data, SADABS, 1996.

3 G. M. Sheldrick, Acta Crystallographica Section C: Structural Chemistry, 2015, 71, 3-8.
4 A. L. Spek, PLATON: A Multipurpose Crystallographic Tool; Utrecht University: Utrecht, The Netherlands, 2003.

Table S1 Crystal data and structural refinements for $\left[\mathrm{Hg}_{4}\left(\mathrm{ClO}_{4}\right)_{4}\left(\mathrm{CH}_{2} \mathrm{COCH}_{2}\right)_{2} \mathrm{~L}_{2}\right] \cdot \mathrm{CH}_{3} \mathrm{COCH}_{3}$, $\left[\mathrm{Hg}_{4}\left(\mathrm{ClO}_{4}\right)_{4}\left(\mathrm{CD}_{2} \mathrm{COCD}_{2}\right)_{2} \mathrm{~L}_{2}\right] \cdot \mathrm{CD}_{3} \mathrm{COCD}_{3}$, and $\left[\mathrm{Hg}_{2}\left(\mathrm{ClO}_{4}\right)_{2}\left(\mathrm{CH}_{2} \mathrm{COCH}_{3}\right)_{2} \mathrm{~L}^{*}\right] \cdot \mathrm{CH}_{3} \mathrm{COCH}_{3}$

	$\begin{aligned} & {\left[\mathrm{Hg}_{4}\left(\mathrm{ClO}_{4}\right)_{4}\left(\mathrm{CH}_{2} \mathrm{COCH}_{2}\right)_{2} \mathrm{~L}_{2}\right]} \\ & \cdot{ }^{-\mathrm{CH}_{3} \mathrm{COCH}_{3}} \end{aligned}$	$\begin{aligned} & {\left[\mathrm{Hg}_{4}\left(\mathrm{ClO}_{4}\right)_{4}\left(\mathrm{CD}_{2} \mathrm{COCD}_{2}\right)_{2} \mathrm{~L}_{2}\right]} \\ & \cdot \mathrm{CD}_{3} \mathrm{COCD}_{3} \end{aligned}$	$\begin{aligned} & {\left[\mathrm{Hg}_{2}\left(\mathrm{ClO}_{4}\right)_{2}\left(\mathrm{CH}_{2} \mathrm{COCH}_{3}\right)_{2} \mathrm{~L}^{*}\right]} \\ & \cdot{ }^{-} \mathrm{CH}_{3} \mathrm{COCH}_{3} \end{aligned}$
Formula	$\mathrm{C}_{40} \mathrm{H}_{60} \mathrm{Cl}_{4} \mathrm{Hg}_{4} \mathrm{~N}_{4} \mathrm{O}_{18} \mathrm{Si}_{4}$	$\mathrm{C}_{40} \mathrm{H}_{60} \mathrm{Cl}_{4} \mathrm{Hg}_{4} \mathrm{~N}_{4} \mathrm{O}_{18} \mathrm{Si}_{4}$	$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ClHgNO}_{7}$
$M_{\text {w }}$	1941.44	1941.44	542.29
Cryst. sys.	Monoclinic	Monoclinic	Triclinic
Space group	C2/m	C2/m	$P^{\overline{1}}$
$a(\AA)$	21.1453(8)	21.124(1)	7.7679(9)
$b(\AA)$	17.4789(7)	17.421(1)	9.396(1)
$c(\AA)$	8.6030(3)	8.6306(5)	13.225(2)
$\alpha\left({ }^{\circ}\right)$	-	-	89.233(1)
$\beta\left({ }^{\circ}\right)$	104.821(1)	105.284(2)	84.705(1)
$\gamma\left({ }^{\circ}\right)$	-	-	69.453(1)
$V\left(\AA^{3}\right)$	3073.8(2)	3063.6(3)	899.8(2)
Z	2	2	2
$\rho\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	2.098	2.105	2.001
$\mu\left(\mathrm{mm}^{-1}\right)$	10.275	10.309	8.734
$R_{\text {int }}$	0.0589	0.0638	0.0496
GoF on F^{2}	1.212	1.173	1.053
$R_{1}[1>2 \sigma(I)]^{\text {a }}$	0.0612	0.0887	0.0395
$w R_{2}(\text { all data) })^{\text {b }}$	0.1652	0.2459	0.1050

Table S2 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{Hg}_{4}\left(\mathrm{ClO}_{4}\right)_{4}\left(\mathrm{CH}_{2} \mathrm{COCH}_{2}\right)_{2} \mathrm{~L}_{2}\right] \cdot \mathrm{CH}_{3} \mathrm{COCH}_{3}$, $\left[\mathrm{Hg}_{4}\left(\mathrm{ClO}_{4}\right)_{4}\left(\mathrm{CD}_{2} \mathrm{COCD}_{2}\right)_{2} \mathrm{~L}_{2}\right] \cdot \mathrm{CD}_{3} \mathrm{COCD}_{3}$, and $\left[\mathrm{Hg}_{2}\left(\mathrm{ClO}_{4}\right)_{2}\left(\mathrm{CH}_{2} \mathrm{COCH}_{3}\right)_{2} \mathrm{~L}^{*}\right] \cdot \mathrm{CH}_{3} \mathrm{COCH}_{3}$

$\begin{gathered} {\left[\mathrm{Hg}_{4}\left(\mathrm{ClO}_{4}\right)_{4}\left(\mathrm{CH}_{2} \mathrm{COCH}_{2}\right)_{2} \mathrm{~L}_{2}\right]} \\ \cdot \mathrm{CH}_{3} \mathrm{COCH}_{3} \end{gathered}$		$\begin{gathered} {\left[\mathrm{Hg}_{4}\left(\mathrm{ClO}_{4}\right)_{4}\left(\mathrm{CD}_{2} \mathrm{COCD}_{2}\right)_{2} \mathrm{~L}_{2}\right]} \\ \cdot \mathrm{CD}_{3} \mathrm{COCD}_{3} \end{gathered}$		$\begin{gathered} {\left[\mathrm{Hg}_{2}\left(\mathrm{ClO}_{4}\right)_{2}\left(\mathrm{CH}_{2} \mathrm{COCH}_{3}\right)_{2} \mathrm{~L}^{*}\right]} \\ \cdot \mathrm{CH}_{3} \mathrm{COCH}_{3} \end{gathered}$	
$\mathrm{Hg}(1)-\mathrm{N}(2 \mathrm{~B})$	2.06(1)	$\mathrm{Hg}(1)-\mathrm{N}(2 \mathrm{~B})$	2.08(2)	$\mathrm{Hg}(1)-\mathrm{C}(1)$	2.079(7)
$\mathrm{Hg}(1)-\mathrm{C}(11 \mathrm{~A})$	2.10(1)	$\mathrm{Hg}(1)-\mathrm{C}(11 \mathrm{~A})$	2.131(1)	$\mathrm{Hg}(1)-\mathrm{N}(12 \mathrm{~L})$	$2.135(5)$
$\mathrm{Hg}(1)-\mathrm{N}(2 \mathrm{~A})$	2.22(2)	$\mathrm{Hg}(1)-\mathrm{N}(2)$	2.25(3)		
$\mathrm{Hg}(1)-\mathrm{O}(5 \mathrm{~A})$	2.47(2)	$\mathrm{Hg}(1)-\mathrm{O}(5 \mathrm{~A})$	2.44(3)		
$\mathrm{Hg}(1)-\mathrm{O}(13)^{\# 1}$	2.662(7)	$\mathrm{Hg}(1)-\mathrm{O}(13)^{\# 1}$	2.63(1)		
$\mathrm{N}(2 \mathrm{~B})-\mathrm{Hg}(1)-\mathrm{C}(11 \mathrm{~A})$	174.2(6)	$\mathrm{N}(2 \mathrm{~B})-\mathrm{Hg}(1)-\mathrm{C}(11 \mathrm{~A})$	172.9(9)	$\mathrm{C}(1)-\mathrm{Hg}(1)-\mathrm{N}(12 \mathrm{~L})$	175.2(2)
$\mathrm{C}(11 \mathrm{~A})-\mathrm{Hg}(1)-\mathrm{N}(2 \mathrm{~A})$	173.2(6)	$\mathrm{C}(11 \mathrm{~A})-\mathrm{Hg}(1)-\mathrm{N}(2)$	176(1)	$\mathrm{C}(11 \mathrm{~L})-\mathrm{N}(12 \mathrm{~L})-\mathrm{Hg}(1)$	120.8(4)
$\mathrm{N}(2 \mathrm{~B})-\mathrm{Hg}(1)-\mathrm{O}(5 \mathrm{~A})$	74.8(8)	$\mathrm{N}(2 \mathrm{~B})-\mathrm{Hg}(1)-\mathrm{O}(5 \mathrm{~A})$	19(1)	$\mathrm{C}(13 \mathrm{~L})-\mathrm{N}(12 \mathrm{~L})-\mathrm{Hg}(1)$	119.5(5)
$\mathrm{C}(11 \mathrm{~A})-\mathrm{Hg}(1)-\mathrm{O}(5 \mathrm{~A})$	105.3(6)	$\mathrm{C}(11 \mathrm{~A})-\mathrm{Hg}(1)-\mathrm{O}(5 \mathrm{~A})$	104.5(9)	$\mathrm{C}(1 \mathrm{E})-\mathrm{C}(2 \mathrm{E})-\mathrm{Hg}(1)$	109.5(5)
$\mathrm{N}(2 \mathrm{~A})-\mathrm{Hg}(1)-\mathrm{O}(5 \mathrm{~A})$	81.5(8)	$\mathrm{N}(2 \mathrm{~A})-\mathrm{Hg}(1)-\mathrm{O}(5 \mathrm{~A})$	$79(1)$		
$\mathrm{C}(3 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})-\mathrm{Hg}(1)$	128(1)	$\mathrm{N}(2 \mathrm{~B})-\mathrm{Hg}(1)-\mathrm{O}(13)^{\# 1}$	88.4(8)		
$\mathrm{C}(7 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})-\mathrm{Hg}(1)$	112(1)	$\mathrm{C}(11 \mathrm{~A})-\mathrm{Hg}(1)-\mathrm{O}(13)^{\# 1}$	97.0(6)		
$\mathrm{C}(3 \mathrm{~B})-\mathrm{N}(2 \mathrm{~B})-\mathrm{Hg}(1)$	122.1(9)	$\mathrm{N}(2 \mathrm{~B})-\mathrm{Hg}(1)-\mathrm{O}(13)^{\# 1}$	88.4(8)		
$\mathrm{C}(7 \mathrm{~B})-\mathrm{N}(2 \mathrm{~B})-\mathrm{Hg}(1)$	118(1)	$\mathrm{O}(5 \mathrm{~A})-\mathrm{Hg}(1)-\mathrm{O}(13)^{\# 1}$	98.3(9)		
$\mathrm{O}(2 \mathrm{~A}) \# 1-\mathrm{O}(5 \mathrm{~A})-\mathrm{Hg}(1)$	156(7)	$\mathrm{C}(11 \mathrm{~A})-\mathrm{Hg}(1)-\mathrm{Hg}(1)^{\# 2}$	77.4(5)		
$\mathrm{Cl}(1 \mathrm{~A})-\mathrm{O}(5 \mathrm{~A})-\mathrm{Hg}(1)$	133(1)	$\mathrm{N}(2 \mathrm{~A})-\mathrm{Hg}(1)-\mathrm{Hg}(1)^{\# 2}$	98.4(1)		
$\mathrm{Cl}(1 \mathrm{~A}) \# 1-\mathrm{O}(5 \mathrm{~A})-\mathrm{Hg}(1)$	127(1)	$\mathrm{O}(5 \mathrm{~A})-\mathrm{Hg}(1)-\mathrm{Hg}(1)^{\# 2}$	145.9(9)		
$\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{Hg}(1)$	109.7	$\mathrm{O}(13) \# 1-\mathrm{Hg}(1)-\mathrm{Hg}(1)^{\# 2}$	48.2(2)		
		$\mathrm{C}(3 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})-\mathrm{Hg}(1)$	135(2)		
		$\mathrm{C}(7 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})-\mathrm{Hg}(1)$	105(2)		

$\# 1-x+1,-y+1,-z+2$	${ }^{\# 1}-x+1,-y+1,-z+2$
$\# 2$	${ }^{\# 2}-x+1, y,-z+2$
${ }^{\# 2} 2,-y+1, z$	${ }^{\# 3} x,-y+1, z$

Fig. S1 IR spectra for $\mathrm{L}(\mathrm{a}),\left[\mathrm{Hg}_{4}\left(\mathrm{ClO}_{4}\right)_{4}\left(\mathrm{CH}_{2} \mathrm{COCH}_{2}\right)_{2} \mathrm{~L}_{2}\right] \cdot \mathrm{CH}_{3} \mathrm{COCH}_{3}$ (b), and $\left[\mathrm{Hg}_{4}\left(\mathrm{ClO}_{4}\right)_{4}\left(\mathrm{CD}_{2} \mathrm{COCD}_{2}\right)_{2} \mathrm{~L}_{2}\right] \cdot \mathrm{CD}_{3} \mathrm{COCD}_{3}$ (c).

(a)

(b)

Fig. S2 ${ }^{1} \mathrm{H}$ NMR spectra for L (a), $\left[\mathrm{Hg}_{4}\left(\mathrm{ClO}_{4}\right)_{4}\left(\mathrm{CH}_{2} \mathrm{COCH}_{2}\right)_{2} \mathrm{~L}_{2}\right] \cdot \mathrm{CH}_{3} \mathrm{COCH}_{3}$ (b), and $\left[\mathrm{Hg}_{4}\left(\mathrm{ClO}_{4}\right)_{4}\left(\mathrm{CD}_{2} \mathrm{COCD}_{2}\right)_{2} \mathrm{~L}_{2}\right] \cdot \mathrm{CD}_{3} \mathrm{COCD}_{3}$ (c) in $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$.

Fig. S3 ${ }^{1} \mathrm{H}$ NMR spectra for $\mathrm{L}(\mathrm{a}),\left[\mathrm{Hg}_{4}\left(\mathrm{ClO}_{4}\right)_{4}\left(\mathrm{CH}_{2} \mathrm{COCH}_{2}\right)_{2} \mathrm{~L}_{2}\right] \cdot \mathrm{CH}_{3} \mathrm{COCH}_{3}$ (b), and $\left[\mathrm{Hg}_{4}\left(\mathrm{ClO}_{4}\right)_{4}\left(\mathrm{CD}_{2} \mathrm{COCD}_{2}\right)_{2} \mathrm{~L}_{2}\right] \cdot \mathrm{CD}_{3} \mathrm{COCD}_{3}(\mathrm{c})$ in $\mathrm{MeCN}-d_{3}$.

Fig. S4 ${ }^{13} \mathrm{C}$ NMR spectra for L (a), $\left[\mathrm{Hg}_{4}\left(\mathrm{ClO}_{4}\right)_{4}\left(\mathrm{CH}_{2} \mathrm{COCH}_{2}\right)_{2} \mathrm{~L}_{2}\right] \cdot \mathrm{CH}_{3} \mathrm{COCH}_{3}$ (b), and $\left[\mathrm{Hg}_{4}\left(\mathrm{ClO}_{4}\right)_{4}\left(\mathrm{CD}_{2} \mathrm{COCD}_{2}\right)_{2} \mathrm{~L}_{2}\right] \cdot \mathrm{CD}_{3} \mathrm{COCD}_{3}(\mathrm{c})$ in $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$.

Fig. S5 ${ }^{1} \mathrm{H} 2 \mathrm{D}$-DOSY NMR spectrum of $\left[\mathrm{Hg}_{4}\left(\mathrm{ClO}_{4}\right)_{4}\left(\mathrm{CH}_{2} \mathrm{COCH}_{2}\right)_{2} \mathrm{~L}_{2}\right] \cdot \mathrm{CH}_{3} \mathrm{COCH}_{3}$ in $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$.
(a)

(b)

Fig. S6 TGA and DSC curves for $\left[\mathrm{Hg}_{4}\left(\mathrm{ClO}_{4}\right)_{4}\left(\mathrm{CH}_{2} \mathrm{COCH}_{2}\right)_{2} \mathrm{~L}_{2}\right] \cdot \mathrm{CH}_{3} \mathrm{COCH}_{3}$ (a) and $\left[\mathrm{Hg}_{4}\left(\mathrm{ClO}_{4}\right)_{4}\left(\mathrm{CD}_{2} \mathrm{COCD}_{2}\right)_{2} \mathrm{~L}_{2}\right] \cdot \mathrm{CD}_{3} \mathrm{COCD}_{3}(\mathrm{~b})$.

Fig. S7 ESI-Mass data of $\left[\mathrm{Hg}_{4}\left(\mathrm{ClO}_{4}\right)_{4}\left(\mathrm{CH}_{2} \mathrm{COCH}_{2}\right)_{2} \mathrm{~L}_{2}\right] \cdot \mathrm{CH}_{3} \mathrm{COCH}_{3}$.

Fig. S8 Crystal structure of $\left[\mathrm{Hg}_{2}\left(\mathrm{ClO}_{4}\right)_{2}\left(\mathrm{CH}_{2} \mathrm{COCH}_{3}\right)_{2} \mathrm{~L}^{*}\right] \cdot \mathrm{CH}_{3} \mathrm{COCH}_{3}$ including the monoanionic acetonylate.

Fig. S9 ${ }^{1} \mathrm{H}$ NMR of $\left[\mathrm{Hg}_{2}\left(\mathrm{ClO}_{4}\right)_{2}\left(\mathrm{CH}_{2} \mathrm{COCH}_{3}\right)_{2} \mathrm{~L}^{*}\right] \cdot \mathrm{CH}_{3} \mathrm{COCH}_{3}$ (a),
$\left[\mathrm{Hg}_{2}\left(\mathrm{ClO}_{4}\right)_{2}\left(\mathrm{CH}_{2} \mathrm{COCH}_{3}\right)_{2} \mathrm{~L}^{*}\right] \cdot \mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{H}_{2} \mathrm{O} 1 \mu \mathrm{~L}(\mathrm{~b})$,
$\left[\mathrm{Hg}_{2}\left(\mathrm{ClO}_{4}\right)_{2}\left(\mathrm{CH}_{2} \mathrm{COCH}_{3}\right)_{2} \mathrm{~L}^{*}\right] \cdot \mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{H}_{2} \mathrm{O} 1 \mu \mathrm{~L}$ after 1 h at RT (c),
$\left[\mathrm{Hg}_{2}\left(\mathrm{ClO}_{4}\right)_{2}\left(\mathrm{CH}_{2} \mathrm{COCH}_{3}\right)_{2} \mathrm{~L}^{*}\right] \cdot \mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{H}_{2} \mathrm{O} 1 \mu \mathrm{~L}$ after 6 h at RT (d), and
$\left[\mathrm{Hg}_{2}\left(\mathrm{ClO}_{4}\right)_{2}\left(\mathrm{CH}_{2} \mathrm{COCH}_{3}\right)_{2} \mathrm{~L}^{*}\right]+\mathrm{H}_{2} \mathrm{O} 1 \mu \mathrm{~L}$ after 24 h at RT (e) showing the equilibrium between $\mathrm{CH}_{3} \mathrm{COCH}_{2}{ }^{-}$and $\mathrm{CH}_{3} \mathrm{COCH}_{3}$.

Fig. S10 ${ }^{1} \mathrm{H}$ NMR of $\left[\mathrm{Hg}_{4}\left(\mathrm{ClO}_{4}\right)_{4}\left(\mathrm{CH}_{2} \mathrm{COCH}_{2}\right)_{2} \mathrm{~L}_{2}\right] \cdot \mathrm{CH}_{3} \mathrm{COCH}_{3}$ (a), $\left[\mathrm{Hg}_{4}\left(\mathrm{ClO}_{4}\right)_{4}\left(\mathrm{CH}_{2} \mathrm{COCH}_{2}\right)_{2} \mathrm{~L}_{2}\right] \cdot \mathrm{CH}_{3} \mathrm{COCH}_{3}$ after 1 h at $100^{\circ} \mathrm{C}(\mathrm{b})$, $\left[\mathrm{Hg}_{4}\left(\mathrm{ClO}_{4}\right)_{4}\left(\mathrm{CH}_{2} \mathrm{COCH}_{2}\right)_{2} \mathrm{~L}_{2}\right] \cdot \mathrm{CH}_{3} \mathrm{COCH}_{3}$ after 6 h at $100^{\circ} \mathrm{C}$ (c), and $\left[\mathrm{Hg}_{4}\left(\mathrm{ClO}_{4}\right)_{4}\left(\mathrm{CH}_{2} \mathrm{COCH}_{2}\right)_{2} \mathrm{~L}_{2}\right] \cdot \mathrm{CH}_{3} \mathrm{COCH}_{3}$ after 24 h at $100^{\circ} \mathrm{C}(\mathrm{d})$ showing the equilibrium between ${ }^{-}$ $\mathrm{CH}_{2} \mathrm{COCH}_{2}^{-}, \mathrm{CH}_{3} \mathrm{COCH}_{2}^{-}$and $\mathrm{CH}_{3} \mathrm{COCH}_{3}$.

