Zirconocene Dichlorides as Catalysts in Alkene Carbo- and Cyclometalation by AlEt₃: Intermediate Structures and Dynamics

Lyudmila V. Parfenova,^{*,a} Pavel V. Kovyazin,^a Olesia V. Mukhamadeeva,^a Pavel V. Ivchenko,^{b,c} Ilya E. Nifant'ev,^{b, c} Leonard M. Khalilov,^a and Usein M. Dzhemilev^a

^aInstitute of Petrochemistry and Catalysis of Russian Academy of Sciences, 450075 Ufa, prosp. Oktyabrya, 141, Russian Federation

^bDepartment of Chemistry, Lomonosov Moscow State University, 119991 Moscow, 1-3 Leninskiye Gory, Russian Federation

^cA.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky prosp. 29, 119991 Moscow, Russian Federation

Supporting Information

The procedure for the evaluation of the exchange constants using the line- shape	
analysis.	4
Figure S1. VT ¹³ C NMR of (AIEt ₃) ₂ :	4
Figure S2. Plots of $ln(k/T)$ vs 1/T for the ethyl group exchange in $(AlEt_3)_2$ obtained from	
line-shape analysis:	5
The procedure for the evaluation of the constants of the exchange in $L_2Zr(\mu$ -	
CI)CH ₂ CH ₂ AlEt ₂ (16m,n,p,q) using 2D EXSY	5
Figure S3. ¹ H NMR of CIAIEt ₂ in C ₇ D ₈	6
Figure S4. ¹³ C NMR of CIAIEt ₂ in C ₇ D ₈	6
Figure S5. ¹ H NMR of Cp ₂ ZrEtCl obtained by the reaction of Cp ₂ ZrHCl+C ₂ H ₄ in C ₇ D ₈ (270 K)	7
Figure S6. HSQC of Cp ₂ ZrEtCl obtained by the reaction of Cp ₂ ZrHCl+C ₂ H ₄ in C ₇ D ₈ (270 K)	7
Figure S7. ¹ H NMR of system Cp ₂ ZrCl ₂ (1a) - (AIEt ₃) ₂ (1:20) in C ₇ D ₈ (5 min)	8
Figure S8. ¹ H NMR of system Cp ₂ ZrCl ₂ (1a) - (AIEt ₃) ₂ (1:20) in C ₇ D ₈ (20 min)	8
Figure S9. ¹³ C NMR of system Cp ₂ ZrCl ₂ (1a) - (AlEt ₃) ₂ (1:20) in C ₇ D ₈	9
Figure S10. HSQC of system Cp ₂ ZrCl ₂ (1a) - (AIEt ₃) ₂ (1:20) in C ₇ D ₈ (20 min)	9
Figure S11. HMBC of system Cp ₂ ZrCl ₂ (1a) - (AIEt ₃) ₂ (1:20) in C ₇ D ₈	10
Figure S12. EXSY of system Cp ₂ ZrCl ₂ (1a) - AlEt ₃ at 290 in C ₇ D ₈ (τ= 1 s)	10
Figure S13. ¹ H NMR of system (CpMe) ₂ ZrCl ₂ (1b) - (AlEt ₃) ₂ in C ₇ D ₈	11
Figure S14. ¹³ C NMR of system (CpMe) ₂ ZrCl ₂ (1b) - (AlEt ₃) ₂ in C ₇ D ₈	11
Figure S15. COSY HH of system (CpMe) ₂ ZrCl ₂ (1b) - (AIEt ₃) ₂ in C ₇ D ₈	12
Figure S16. HSQC of system (CpMe) ₂ ZrCl ₂ (1b) - (AlEt ₃) ₂ in C ₇ D ₈	12
Figure S17. ¹ H NMR of complex 16a obtained by the reaction of $Cp_2ZrEtCl$ with (AlEt ₃) ₂ in	
С ₇ D ₈ (300 К)	13
Figure S18. ¹³ C NMR of complex 16a obtained by the reaction of Cp ₂ ZrEtCl with (AlEt ₃) ₂ in	
С ₇ D ₈ (300 К)	13
Figure S19. HSQC of complex 16a in C ₇ D ₈ (300 K)	14
Figure S20. ¹³ C NMR monitoring of reaction 16a + 1-hexene in C ₇ D ₈	14
Figure S21. ¹ H NMR of complex 16h obtained by the reaction of 1h with (AlEt ₃) ₂ (1:11) in	
C ₇ D ₈ at 270 K	15
Figure S22. COSY HH of complex 16h in C ₇ D ₈ at 270 K	15
Figure S23. EXSY of complex 16h in C ₇ D ₈ at 298 K (τ= 0.3 s)	16
Figure S24. HMBC of complex 16h in C ₇ D ₈ at 298 K	16

Figure S	25. ¹ H NMR of 16m obtained by the reaction of 1m with (AlEt ₃) ₂ (1:13) in C ₇ D ₈ at	
298 K		17
Figure S	26. COSY HH of 16m in C ₇ D ₈ at 260 K.	17
Figure S	27. ¹³ C NMR of 16m in C ₇ D ₈ at 260 K	18
Figure S	28. HSQC of 16m in C ₇ D ₈ at 260 K	18
Figure S	29. EXSY of 16m in C ₇ D ₈ at 298 K (τ= 0.3 s)	19
Figure S 270 K	30. ¹ H NMR of 16m obtained by the reaction of 1m with (AlEt ₃) ₂ (1:24) in CD ₂ Cl ₂ at	19
Figure S	31. ¹ H NMR of complex 16n obtained by the reaction of 1n with (AlEt ₃) ₂ (1:16) in	
C ₇ D ₈ at 2	85 K	20
Figure S	32. COSY HH of 16n in C ₇ D ₈ at 270 K	20
Figure S	33. ¹³ C NMR of 16n in C ₇ D ₈ at 270 K	21
Figure S	34. HSQC of 16n in C ₇ D ₈ at 270 K	21
Figure S	35. HMBC of 16n in C ₇ D ₈ at 270 K	22
Figure S	36. EXSY spectrum of 16n in C ₇ D ₈ at 293 K (τ= 0.3 s)	22
Figure S	37. ¹ H NMR of 16p obtained by the reaction of 1p with (AlEt ₃) ₂ (1:13) in C ₇ D ₈ at	
280 K		23
Figure S	38. COSY HH of 16p in C ₇ D ₈ at 260 K	23
Figure S	39. HSQC of 16p in C ₇ D ₈ at 270 K	24
Figure S	10. HMBC of 16p in C ₇ D ₈ at 270 K	24
Figure S	11. EXSY spectrum of 16p in C_7D_8 at 293 K (τ = 0.3 s).	25
Figure S	12. ¹ H NMR of 16p obtained by the reaction of 1p with (AlEt ₃) ₂ (1:13) in CD ₂ Cl ₂ at	
280 К		25
Figure S	13. ¹ H NMR of 16q obtained by the reaction of 1q with (AlEt ₃) ₂ (1:2) in C ₇ D ₈ at 285	
К		26
Figure S	14. COSY HH of 16q in C ₇ D ₈ at 260 K.	26
Figure S	15. ¹³ C NMR of 16q in C ₇ D ₈ at 220 K	27
Figure S	16. HSQC of 16q in C ₇ D ₈ at 220 K	27
Figure S	17. HMBC of 16q in C ₇ D ₈ at 220 K	28
Figure S	18. EXSY of 16q in C ₇ D ₈ at 290 K (τ= 0.3 s).	28
Figure S 285 K	19. ¹ H NMR of 16q obtained by the reaction of 1q with (AlEt ₃) ₂ (1:13) in CD_2Cl_2 at	29
Figure S	50. ¹ H NMR of 17I obtained by the reaction of 1I with (AlEt ₃) ₂ (1:24) in C ₇ D ₈ at 298	
К		29
Figure S	51. COSY HH of 17l in C ₇ D ₈ at 298 K	30
Figure S	52. ¹³ C NMR of 17I in C ₇ D ₈ at 298 K	30
Figure S	53. HSQC of 17l in C ₇ D ₈ at 298 K	31
Figure S	54. HMBC of 17l in C ₇ D ₈ at 298 K	31
Figure S	55. NOESY of 17l in C ₇ D ₈ at 298 K	32
Figure S	56. ¹ H NMR of 17m obtained by the reaction of 1m with (AlEt ₃) ₂ (1:13) in C ₇ D ₈ at	
299 K		32
Figure S	57. COSY HH of 17m in C ₇ D ₈ at 299 K.	33
Figure S	58. ¹³ C NMR of 17m in C ₇ D ₈ at 299 K	33
Figure S	59. HSQC of 17m in C ₇ D ₈ at 299 K	34
Figure S	5 0. HMBC of 17m in C ₇ D ₈ at 299 K	34
Figure S	51. NOESY of 17m in C ₇ D ₈ at 299 K	35
Figure S	52. [⊥] H NMR of system Cp* ₂ ZrCl ₂ (1c) - (AlEt ₃) ₂ (1:20) in C ₇ D ₈ at 299 K	35
Figure S	53. COSY HH of system Cp* ₂ ZrCl ₂ (1c) - (AlEt ₃) ₂ (1:20) in C ₇ D ₈	36

Figure S64. ¹ H NMR of 20h obtained by the reaction of 1h with (AlEt ₃) ₂ (1:11) in C ₇ D ₈ at	
290 K	36
Figure S65. COSY HH of 20h in C ₇ D ₈ at 290 K.	37
Figure S66. ¹³ C NMR of 20h in C ₇ D ₈ at 290 K	37
Figure S67. HSQC of 20h in C_7D_8 at 290 K.	38
Figure S68. HMBC of 20h in C ₇ D ₈ at 290 K	38
Figure S69. ¹ H NMR of 20p obtained by the reaction of 1p with (AlEt ₃) ₂ (1:13) in C_7D_8 at	
305 K	39
Figure S70. COSY HH of 20p in C ₇ D ₈ at 299 K.	39
Figure S71. ¹³ C NMR of 20p in C_7D_8 at 299 K	40
Figure S72. HSQC of 20p in C ₇ D ₈ at 299 K.	40
Figure S73. HMBC of $20p$ in C_7D_8 at 299 K.	41
Figure S74. ¹ H NMR of 20q obtained by the reaction of 1q with (AlEt ₃) ₂ (1:13) in CD ₂ Cl ₂ at	
298 K	42
Figure S75. COSY HH of 20g in CD ₂ Cl ₂ at 298 K.	42

The procedure is considered on the example of a solution of triethylaluminum in CD_2Cl_2 . Thus, the ¹³C NMR spectra in the temperature range 200-300 K were recorded (Fig. S1).

Line-shape analyses were carried out using Dynamic NMR module (version 1.1.2) implemented into the Bruker Topspin 3.2 program, which simulate 1D temperature dependent NMR spectra of coupled half spin nuclei, interactively set up and iteratively refine the model parameters to get the best fit of the measured and simulated 1D NMR spectra and to obtain the reaction speed parameters of exchange processes. The theory of the calculation, special features of the DNMR module (chemical exchange operators, fitting quality, etc.) and detailed procedure are described in the software manual "DNMR Lineshape Analysis" written by Dr. János Rohonczy, 2007.

The details on the constant evaluation via line-shape analysis are presented in the SI of Ref.[37].

Figure S2. Plots of ln(k/T) vs 1/T for the ethyl group exchange in $(AlEt_3)_2$ obtained from line-shape analysis:

 \Box - 4.8 M/l in CD₂Cl₂, O- 0.5 M/l in CD₂Cl₂, Δ - 4.0 M/l in C₇D₈, \diamond - 0.6 M/l (AlEt₃) + 0.1 M/l (ClAlEt₂) in C₇D₈).

The procedure for the evaluation of the constants of the exchange in $L_2Zr(\mu-Cl)CH_2CH_2AlEt_2$ (16m,n,p,q) using 2D EXSY.

2D NMR EXSY (NOESY) spectra were recorded in the phase-sensitive mode using standard Bruker gradient pulse sequences with relaxation delay 1 s, 90° pulse - 8.0 μ s, mixing time τ =0.3-1 s. The mixing time was chosen in such a range that diagonal and cross- peaks were observed simultaneously. The areas of the diagonal and cross- peaks for the signals of the H⁵ and H⁶ atoms of the ZrCH₂CH₂Al fragment in the -3 - 0 ppm region in the temperature range 290–310 K were determined. Constants of the exchange were calculated by the formula [Ch.L. Perrin, T.J. Dwyer, *Chem. Rev.*, 1990, **90**, 6, 935–967]:

$$\mathbf{k} = \frac{1}{\tau} \ln \frac{\mathbf{r} + 1}{\mathbf{r} - 1}, \quad \mathbf{r} = \frac{\mathbf{I}_{AA} + \mathbf{I}_{BB}}{\mathbf{I}_{AB} + \mathbf{I}_{BA}}$$

 τ – mixing time, I_{AA}, I_{BB}- diagonal peak areas, I_{AB}, I_{BA}- cross-peak areas.

The values of ΔH^{\sharp} , ΔG^{\sharp} , ΔS^{\sharp} were calculated according to the Eyring equation [J. Sandström, *Dynamic NMR Spectroscopy.* – NY: Academic Press, 1982. – 226p]:

$$\ln(k/T) = -\Delta H^{\sharp}/RT + \Delta S^{\sharp}/R + \ln(k_b/h),$$

where $k_{\rm b}$ – the Boltzmann constant, and h- the Planck constant.

Figure S3. ¹H NMR of CIAlEt₂ in C₇D₈.

3.5 3.0

2.5

2.0

1.5

1.0

0.5

0.0

120

-140

ppm

• •

6.0

7.0

6.5

.

5.5

5.0

4.5

4.0

Figure S5. ¹H NMR of Cp₂ZrEtCl obtained by the reaction of Cp₂ZrHCl+C₂H₄ in C₇D₈ (270 K).

Figure S7. ¹H NMR of system Cp_2ZrCl_2 (**1a**) - (AlEt₃)₂ (1:20) in C_7D_8 (5 min).

Figure S9. ¹³C NMR of system Cp_2ZrCl_2 (**1a**) - (AlEt₃)₂ (1:20) in C_7D_8 .

Figure S11. HMBC of system Cp₂ZrCl₂ (**1a**) - (AlEt₃)₂ (1:20) in C₇D₈.

Figure S13. ¹H NMR of system (CpMe)₂ZrCl₂ (1b) - (AlEt₃)₂ (1:27) in C₇D₈.

Figure S15. COSY HH of system (CpMe)₂ZrCl₂ (1b) - (AlEt₃)₂ in C₇D₈.

Figure S17. ¹H NMR of complex **16a** obtained by the reaction of $Cp_2ZrEtCl$ with $(AlEt_3)_2$ in C_7D_8 (300 K).

Figure S18. ¹³C NMR of complex **16a** obtained by the reaction of $Cp_2ZrEtCl$ with $(AlEt_3)_2$ in C_7D_8 (300 K).

Figure S19. HSQC of complex 16a in C₇D₈ (300 K).

Figure S21. ¹H NMR of complex **16h** obtained by the reaction of **1h** with $(AlEt_3)_2$ (1:11) in C₇D₈ at 270 K.

Figure S23. EXSY of complex 16h in C_7D_8 at 298 K (τ = 0.3 s).

Figure S25. ¹H NMR of 16m obtained by the reaction of 1m with (AlEt₃)₂ (1:13) in C₇D₈ at 298 K.

Figure S29. EXSY of **16m** in C₇D₈ at 298 K (τ= 0.3 s).

Figure S31. ¹H NMR of complex **16n** obtained by the reaction of **1n** with $(AlEt_3)_2$ (1:16) in C₇D₈ at 285 K.

Figure S35. HMBC of 16n in C₇D₈ at 270 K.

Figure S39. HSQC of **16p** in C₇D₈ at 270 K.

Figure S43. ¹H NMR of 16q obtained by the reaction of 1q with (AlEt₃)₂ (1:2) in C₇D₈ at 285 K.

Figure S47. HMBC of **16q** in C₇D₈ at 220 K.

Figure S49. ¹H NMR of **16q** obtained by the reaction of **1q** with $(AlEt_3)_2$ (1:13) in CD_2Cl_2 at 285 K.

Figure S55. NOESY of 17I in C₇D₈ at 298 K.

Figure S61. NOESY of 17m in C₇D₈ at 299 K.

Figure S65. COSY HH of 20h in C₇D₈ at 290 K.

Figure S67. HSQC of **20h** in C₇D₈ at 290 K.

Figure S69. ¹H NMR of 20p obtained by the reaction of 1p with (AlEt₃)₂ (1:13) in C₇D₈ at 305 K.

Figure S71. 13 C NMR of 20p in C₇D₈ at 299 K.

Figure S73. HMBC of **20p** in C₇D₈ at 299 K.

Figure S74. ¹H NMR of 20q obtained by the reaction of 1q with (AlEt₃)₂ (1:13) in CD₂Cl₂ at 298 K.