Supporting information

A straightforward approach to high purity sodium silicide Na₄Si₄

Yang Song,^a Isabel Gómez-Recio,^a Ram Kumar^a, Cristina Coelho Diogo,^b Sandra Casale,^c Isabelle Génois,^a David Portehault^{a,*}

^{*a*} Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris (CMCP), 4 place Jussieu, F-75005, Paris, France

^b Sorbonne Université, CNRS, Institut des Matériaux de Paris-Centre, IMPC, F-75005, Paris, France

^{*c*} Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), 4 place Jussieu, F-75005, Paris, France

Reactants	Setup	Ball- milling time	Reaction time	Reaction temperature	Purity	Purification procedure	Ref.
NaH+Si nanoparticles Na in 10 mol.% excess	Covered h- BN crucible in a quartz tube	2min	24h	395°C	98%	/	This work
NaH+Si Na in 90 mol.% excess	Covered alumina crucible in a silica glass tube	30min	48h	420°C	Na detected by XRD	/	30
NaH+Si Na in 60 mol.% excess	Covered alumina crucible	1h	48h	395°C	/	Excess Na removed by vacuum at 250°C for 3h	19
Na+Si Na in slight excess	Ta crucible sealed in stainless steel tube	/	72h	650°C	/	Excess Na removed by evacuation at 300°C for 6h	7
Na+Si Na in 10 mol.% excess	Nb tube welded with Ar arc welder, sealed in fused silica jacket	/	83h	650°C	/	Excess Na removed by vacuum sublimation at 300°C	25
Na+Si Na in excess	Closed Ta container sealed in evacuated quartz glass ampoule	/	100h	750°C	/	Excess Na removed by vacuum distillation at 230 °C and 5.10 ⁻⁶ mbar	23
Na+Si Na in 6 mol.% excess	Ni crucible sealed in steel autoclave	/	30-40h	650°C	/	Excess Na removed at 240°C for 15-20h	26
Na+Si Na in 10 mol.% excess	W crucible sealed in stainless steel canister	/	36h	650°C	Na in excess	/	27
Na+Si Stoichiometric mixture	Sealed Ta tube	/	1h10min	800-1200°C	44% (Si in excess)	/	6
Na+silica gel	Sealed Erlenmeyer flask	/	/	400°C	15%	/	28

Table S1 Comparison of reported syntheses towards Na_4Si_4

Figure S1. Powder XRD pattern (bottom) of Si nanoparticles used as reagents. The XRD pattern is indexed along the silicon diamond structure (red bars).

Figure S2. TEM images of as-received Si nanoparticles used as reagents.

Table S2. Na₄Si₄ lattice parameters obtained by Le Bail analysis of the XRD pattern of the powder obtained at 395 °C for 24 h under 55 mL min⁻¹ Ar flow for a NaH:Si = 1.1:1 mol. reagent ratio.

	Na4Si4	NaOH
S.G.	C2/c	Стст
a (Å)	12.1727(2)	3.3990(1)
b (Å)	6.5684(1)	11.4366(6)
c (Å)	11.1442(1)	3.4054(1)
β (°)	119.1546(9)	
χ^2	4.22	2

Figure S3. Quickly acquired (5 min) powder XRD pattern of the Na₄Si₄ sample obtained at 395 °C for 24 h under 55 mL min⁻¹ Ar flow for a NaH:Si = 1.1:1 mol. reagent ratio. Red drop lines indicate Na₄Si₄ reference. The blue line shows the experimental diagram recorded for the empty sample holder equipped with the scattering plastic dome. The absence of a peak at 38.2° (2theta Cu K α) indicates the absence of crystalline NaOH.

Figure S4. Powder XRD pattern of the white pellet on the top of the as-prepared product of Na₄Si₄ synthesis.

Table S3. Lattice parameters obtained by Le Bail analysis of the XRD pattern of the clathrate powders obtained by Na₄Si₄ thermal decomposition at 470 and 440 °C.

	S.G	a470°C (Å)	a440°C (Å)
Na ₈ Si ₄₆	Pm-3n	10.1943(1)	10.2050(3)
Na _x Si ₁₃₆	Fd-3m		14.6581(1)
Si	Fd3-m	5.4248(1)	5.4418(2)
χ^2		4.78	4.17