Effect of Temperature on the Complexation of Triscarbonatouranyl(VI) with Calcium and Magnesium in NaCl Aqueous Solution.

Chengming Shang and Pascal E. Reiller*.

Université Paris-Saclay, CEA, Service d'Études Analytiques et de Réactivité des Surfaces (SEARS), F-91191 Gif-sur-Yvette CEDEX, France.

Uranium; Carbonate; Ternary magnesium-uranyl-carbonate complexes; Luminescence.

*Email pascal.reiller@cea.fr

Number of pages: 12

Number of Tables: 9

Number of Figures: 5

Table S1. Composition and properties of standard buffer solutions.

pH value at 25°	1.68	4.01	6.87	9.18
Composition ¹	0.05m potassium	0.05 m potassium	0.025 m KH ₂ PO ₄	0.01 m
	tetraoxalate	hydrogen phthalate	and 0.025 m	Na ₂ B ₄ O ₇ :10H ₂ O
	(KH ₃ C ₄ O ₈)	(KHC ₈ H ₄ O ₄)	(Na ₂ HPO ₄)	
Temperature range	0-95	0-95	0-95	0-50
Temperature		+0.0012	-0.0028	-0.0028
coefficient <i>d</i> pH/ <i>dt</i>				

Table S2. Recalculated pH values of buffer solutions at investigated temperatures and potential values E_{mes} read on pH-meter.

Temp	рН	E _{mes} (mV)	Slope	Intercept						
5°	1.67	299.1	4.00	166.9	6.95	1.8	9.39	-133.4	-56.01	391.81
10°	1.67	299.5	4.00	166.2	6.92	0.8	9.33	-135.1	-56.72	393.69
15°	1.67	302.2	4.00	165.5	6.90	-0.5	9.28	-135.2	-57.45	396.79
22°	1.68	304.2	4.00	164.9	6.88	-1.4	9.23	-136.1	-58.24	400.18
30°	1.68	308.2	4.01	165.6	6.85	-3.3	9.14	-138.8	-59.86	407.39
35°	1.69	311.2	4.02	167.1	6.84	-3.2	9.11	-139.5	-60.70	412.58
40°	1.69	314	4.03	168.7	6.84	-3	9.07	-140.2	-61.49	417.38
45°	1.70	318.2	4.04	171.4	6.83	-3.1	9.04	-140	-62.44	423.97
50°	1.71	321.2	4.06	171.9	6.83	-3.3	9.02	-140.4	-63.16	428.74

Reaction	log₁₀ <i>K</i> °	∆rH _m ° (kJ mol ⁻¹)	References
$CO_2(g) + H_2O \rightleftharpoons CO_3^{2-} + 2H^+$	-18.15 ± 0.06	4.11 ± 0.28	Guillaumont et al.2
$CO_3^{2-} + 2H^+ \rightleftharpoons CO_2(aq) + H_2O$	16.68 ± 0.05	-23.86 ± 0.14	Guillaumont et al.2
$CO_3^{2-} + H^+ \rightleftharpoons HCO_3^{-}$	10.33 ± 0.05	-14.70 ± 0.15	Guillaumont et al.2
$UO_2^{2+} + H_2O \rightleftharpoons UO_2(OH)^+ + H^+$	-5.25 ± 0.24	43.46 ± 5.55	Guillaumont et al.2
$UO_2^{2+} + 2H_2O \rightleftharpoons UO_2(OH)_2(aq) + 2H^+$	-12.15 ± 0.07	111.16 ³	Guillaumont et al.2
$3UO_2^{2+} + 5H_2O \rightleftharpoons (UO_2)_3(OH)_5^+ + 5H^+$	-15.55 ± 0.12	123.70 ± 0.60	Guillaumont et al.2
$UO_2^{2+} + CO_3^{2-} \rightleftharpoons UO_2(CO_3)(aq)$	9.94 ± 0.03	5.0 ± 2.0	Guillaumont et al.2
$UO_2^{2+} + 2CO_3^{2-} \rightleftharpoons UO_2(CO_3)_2^{2-}$	16.61 ± 0.09	18.50 ± 4.0	Guillaumont et al.2
$UO_2^{2+} + 3CO_3^{2-} \rightleftarrows UO_2(CO_3)_3^{4-}$	21.84 ± 0.04	-39.20 ± 4.10	Guillaumont et al.2
2UO ₂ ²⁺ + CO ₂ (g) + 4H ₂ O ≓	-19.01 ± 0.50	-	Guillaumont et al.2
(UO ₂) ₂ CO ₃ (OH) ₃ ⁻ + 5H ⁺			
$2UO_2^{2+} + CO_3^{2-} + 3H_2O \rightleftharpoons$	-0.86 ± 0.50		Recalculated from
(UO ₂) ₂ CO ₃ (OH) ₃ ⁻ + 3H ⁺			Guillaumont et al.2
$UO_2(CO_3)_3^{4-} + 4H^+ \rightleftharpoons UO_2(CO_3)(aq) +$	24.40 ± 0.19	35.98 ± 3.64	Recalculated from
$2CO_2(g) + 2H_2O$			Guillaumont et al.2
$UO_2(CO_3)_3^{4-} + 2H^+ \rightleftharpoons UO_2(CO_3)_2^{2-} +$	12.92 ± 0.13	53.59 ± 1.05	Recalculated from
$CO_2(g) + H_2O$			Guillaumont et al.2
2UO ₂ (CO ₃) ₃ ⁴⁻ + 7H ⁺ ≓	46.22 ± 0.30	-	Recalculated from
$(UO_2)_2CO_3(OH)_3^- + 5CO_2(g) + 2H_2O$			Guillaumont et al.2

Table S3 Stability constants of the U(VI) complexes at 25°C and $I_m = 0$, used in this work.

Table S4 Main specific ion interaction coefficients used in this work.

Specific ion interaction coefficient	Value (± 1σ)	Ref.
ε(H⁺, CΓ)	0.12 ± 0.01	Guillaumont <i>et al.</i> ²
ε(Na ⁺ , CO ₃ ²⁻)	-0.08 ± 0.03	Guillaumont <i>et al.</i> ²
$\varepsilon(UO_2^{2+}, CI^{-})$	0.46 ± 0.03	Guillaumont <i>et al.</i> ²
ε(Mg ²⁺ , Cl ⁻)	0.19 ± 0.02	Guillaumont <i>et al.</i> ²
ε(UO ₂ (CO ₃) ₂ ²⁻ , Na ⁺)	-0.02 ± 0.09	Guillaumont <i>et al.</i> ²
ε(UO ₂ (CO ₃) ₃ ⁴⁻ , Na ⁺)	-0.01 ± 0.11	Guillaumont <i>et al.</i> ²
ϵ (MgUO ₂ (CO ₃) ₃ ²⁻ , Na ⁺) (in NaCl)	0.31 ± 0.02	Shang <i>et al.</i> ⁴
ϵ (CaUO ₂ (CO ₃) ₃ ²⁻ , Na ⁺) (in NaCl)	0.29 ± 0.11	Shang <i>et al.</i> ⁵
ε(Ca ₂ UO ₂ (CO ₃) ₃ , NaCl)	0.66 ± 0.22	Shang <i>et al.</i> ⁵

Table S5(a). Experimental sample information: pH values, calculated Ringböm coefficients α — see Shang *et al.*⁴⁻⁶ for details —, [Mg²⁺] (mol kg_w⁻¹) and deduced F₀; the sample solutions giving the slope of 1 are set in *italics*.

Т (°С)	5				10			
Sample	рН	α	[Mg ²⁺]	Fo	рН	α	[Mg ²⁺]	F ₀ (counts)
	value		$(mol_k a_{m-1})$	(counts)	value		(mol·kg _w -1)	
			(morkgw)					
1	8.92	1.00	0	1.46E+08	8.99	1.00	1.00E-05	1.26E+08
2	8.59	1.00	1.57E-04	1.16E+08	8.61	1.00	1.57E-04	1.45E+08
3	8.29	1.01	2.37E-04	1.23E+08	8.30	1.01	2.37E-04	1.29E+08
4	8.24	1.02	5.31E-04	1.16E+08	8.26	1.01	5.31E-04	1.66E+08
5	8.13	1.08	7.50E-04	1.11E+08	8.18	1.03	1.18E-03	1.35E+08
6	7.99	1.48	1.18E-03	1.13E+08	8.05	1.19	1.18E-03	1.24E+08
7	7.88	2.57	1.82E-03	6.41E+07	7.89	1.31	1.82E-03	1.06E+08
8	7.82	3.78	2.21E-03	1.11E+08	7.82	2.63	2.21E-03	1.42E+08
9	7.79	4.65	3.38E-03	1.23E+08	7.79	5.13	3.38E-03	1.04E+08
10	7.72	7.74	4.58E-03	1.14E+08	7.72	7.96	4.58E-03	1.16E+08
11	7.69	9.70	8.89E-03	1.37E+08	7.69	12.55	8.89E-03	1.77E+08
12	7.64	14.25	1.34E-02	1.32E+08	7.64	16.95	1.34E-02	2.06E+08
13	7.61	17.99	1.51E-02	1.28E+08	7.61	25.30	1.51E-02	2.39E+08
14	7.54	31.21	3.02E-02	1.29E+08	7.54	34.37	3.02E-02	2.26E+08
T (°C)	15	•	•	•	22 ⁴	•	•	•
Sample	pН	α	[Mg ²⁺]	F ₀	pН	α	[Mg ²⁺]	F ₀ (counts)
	value		(mol⋅kg _w -1)	(counts)	value		(mol⋅kg _w -1)	
1	8.97	1.00	1.00E-05	7.97E+07	9.17	1.00	0	2.61E+07
2	8.80	1.00	1.57E-04	6.20E+07	8.26	1.09	3.48E-04	2.82E+07
3	8.42	1.01	2.37E-04	6.38E+07	8.22	1.12	7.32E-04	2.37E+07
4	8.38	1.01	5.31E-04	5.52E+07	8.07	1.49	1.25E-03	2.23E+07
5	8.26	1.04	1.18E-03	5.04E+07	8.05	1.64	1.49E-03	2.49E+07
6	8.10	1.22	1.18E-03	5.38E+07	8.00	2.08	2.38E-03	2.62E+07
7	8.05	1.41	1.82E-03	5.74E+07	7.90	3.80	4.16E-03	2.90E+07
8	7.90	3.00	2.21E-03	6.08E+07	7.87	4.80	6.36E-03	3.30E+07
9	7.86	3.90	3.38E-03	5.95E+07	7.78	8.90	1.56E-02	3.51E+07
10	7.78	6.88	4.58E-03	6.21E+07	7.74	12.13	2.50E-02	4.59E+07
11	7.72	10.80	8.89E-03	7.20E+07				
Т (°С)	30							
Sample	pН	α	[Mg ²⁺]	F ₀				
	value		(mol⋅kg _w -1)	(counts)				
1	8.97	1.00	1.00E-05	9.65E+07				
2	8.80	1.00	1.57E-04	4.32E+07				
3	8.42	1.03	2.37E-04	8.18E+07				
4	8.38	1.04	5.31E-04	3.85E+07				
5	8.25	1.10	1.18E-03	5.23E+07				
6	8.09	1.55	1.18E-03	5.59E+07				
7	8.05	1.84	2.21E-03	4.96E+07				
8	7.90	4.49	3.38E-03	4.24E+07				
9	7.81	8.56	4.58E-03	6.01E+07				
10	7.78	10.72	1.34E-02	1.04E+08				
11	7.75	13.48	1.51E-02	1.23E+08				
12	7.72	16.98	3.02E-02	1.95E+08				

Table S5(b). Experimental sample information – pH values, calculated Ringböm coefficients α , [Ca²⁺] (mol kgw⁻¹) and deduced F₀; the sample solutions giving the slope of 1 are set in *italics*; the sample solutions giving the slope of 2 are set in **bold**.

T (°C)	10				15			
Sample	рН	α	[Ca ²⁺]	Fo	рН	α	[Ca ²⁺]	F ₀ (counts)
	value		$(mol_k a_w^{-1})$	(counts)	value		(mol⋅kg _w -1)	
			(morkgw)					
1	8.97	1.00	0	3.42E+08	8.97	1.00	0	5.22E+08
2	8.50	1.00	5.72E-05	2.92E+08	8.50	1.01	5.72E-05	3.75E+08
3	8.48	1.00	6.18E-05	3.10E+08	8.48	1.01	6.18E-05	3.65E+08
4	8.36	1.01	6.48E-05	3.15E+08	8.36	1.02	6.46E-05	3.91E+08
5	8.30	1.01	8.06E-05	3.42E+08	8.20	1.07	8.72E-05	4.21E+08
6	8.22	1.03	9.87E-05	3.50E+08	8.16	1.11	1.19E-04	4.43E+08
7	8.18	1.05	1.23E-04	3.66E+08	8.12	1.18	1.56E-04	4.44E+08
8	8.08	1.18	1.57E-04	3.80E+08	8.05	1.41	1.74E-04	4.92E+08
9	7.99	1.55	2.31E-04	4.29E+08	8.00	1.72	2.45E-04	5.19E+08
10	7.92	2.17	4.80E-04	4.51E+08	7.93	2.49	4.34E-04	5.30E+08
11	7.82	4.08	7.41E-04	5.25E+08	7.87	3.64	6.65E-04	5.35E+08
12	7.78	5.43	1.12E-03	5.28E+08	7.83	4.80	1.15E-03	5.42E+08
13	7.75	6.75	1.33E-03	5.68E+08	7.76	7.98	1.76E-03	5.78E+08
14	7.70	9.82	2.00E-03	6.02E+08	7.70	12.59	1.96E-03	5.94E+08
15	7.62	18.17	2.63E-03	6.13E+08	7.62	23.45	2.26E-03	6.58E+08
16	7.56	29.13	3.34E-03	6.84E+08	7.57	34.79	3.86E-03	6.74E+08
17	7.51	43.34	4.40E-03	7.77E+08	7.50	60.70	4.28E-03	7.12E+08
T (°C)	22 ⁵		-	<u> </u>	25		<u>.</u>	
Sample	pН	α	[Ca ²⁺]	F ₀	pН	α	[Ca ²⁺]	F ₀ (counts)
	value		(mol⋅kg _w -1)	(counts)	value		(mol⋅kg _w -1)	
1	9.90	1.00	0	1.70E+08	8.97	1.00	0	3.77E+08
2	8.66	1.06	2.78E-05	1.66E+08	8.36	1.03	6.48E-05	3.04E+08
3	8.42	1.04	9.09E-05	1.29E+08	8.16	1.19	1.39E-04	3.27E+08
4	8.26	1.10	1.76E-04	1.75E+08	8.12	1.30	1.96E-04	3.44E+08
5	8.23	1.12	2.22E-04	2.25E+08	8.05	1.65	2.87E-04	3.70E+08
6	8.15	1.24	3.06E-04	2.40E+08	8.00	2.10	4.71E-04	4.10E+08
7	8.11	1.37	4.04E-04	2.27E+08	7.93	3.19	8.44E-04	3.91E+08
8	8.10	1.34	4.93E-04	2.18E+08	7.87	4.76	1.09E-03	3.84E+08
9	8.08	1.51	6.00E-04	2.74E+08	7.83	6.33	1.87E-03	3.69E+08
10	8.00	2.06	9.03E-04	2.47E+08	7.76	10.64	2.69E-03	3.88E+08
11	7.97	2.52	1.22E-03	3.08E+08	7.70	16.88	3.02E-03	4.00E+08
12	7.92	3.30	1.72E-03	3.12E+08	7.62	31.61	4.07E-03	4.19E+08
13	7.87	4.79	2.08E-03	3.32E+08	7.57	46.99	5.72E-03	3.92E+08
14	7.85	5.51	2.64E-03	3.55E+08	7.50	82.02	8.23E-03	4.33E+08
15	7.81	7.07	3.42E-03	3.08E+08				
16	7.75	11.55	4.70E-03	3.53E+08				
17	7.63	28.25	6.25E-03	3.43E+08				
18	7.60	37.08	8.55E-03	3.74E+08				
19	7.55	53.34	1.04E-02	3.84E+08				
20	7.52	70.02	1.53E-02	4.25E+08				
21	7.50	79.91	1.74E-02	4.30E+08				
22	7.48	96.30	2.49E-02	5.85E+08				

Table S5(b). continued

T (°C)	35				40			
Sample	pН	α	[Ca ²⁺]	F ₀	pН	α	[Ca ²⁺]	F ₀ (counts)
-	value		(mol⋅kg _w -1)	(counts)	value		(mol⋅kg _w -1)	
1	8.97	1.00	0	3.86E+08	8.97	1.00	0	2.85E+07
2	8.58	1.01	2.69E-05	1.71E+08	8.36	1.08	1.94E-04	5.43E+07
3	8.55	1.02	4.67E-05	1.04E+08	8.16	1.42	2.98E-04	5.78E+07
4	8.50	1.02	5.72E-05	3.66E+08	8.12	1.62	4.19E-04	5.89E+07
5	8.48	1.03	6.18E-05	3.49E+08	8.05	2.23	6.13E-04	6.24E+07
6	8.36	1.06	6.48E-05	2.07E+08	8.00	2.96	1.01E-03	6.27E+07
7	8.16	1.33	1.39E-04	2.90E+08	7.93	4.66	1.80E-03	7.83E+07
8	8.12	1.50	1.96E-04	2.98E+08	7.87	7.11	2.56E-03	7.96E+07
9	8.05	2.02	2.87E-04	3.20E+08	7.81	11.09	3.30E-03	8.15E+07
10	8.00	2.65	4.71E-04	3.03E+08	7.78	13.93	4.25E-03	9.20E+07
11	7.93	4.13	8.44E-04	3.19E+08	7.75	17.53	5.59E-03	1.29E+08
12	7.87	6.28	1.09E-03	3.09E+08	7.71	23.90	7.04E-03	1.43E+08
13	7.78	12.24	1.80E-03	3.11E+08	7.68	30.21	7.77E-03	1.58E+08
14	7.70	22.69	2.15E-03	3.73E+08				
15	7.62	42.54	3.25E-03	3.37E+08				
16	7.57	80.28	4.50E-03	3.41E+08				
17	7.49	119.6	7.20E-03	3.79E+08				
T (°C)	45				50			
Sample	pН	α	[Ca ²⁺]	Fo	pН	α	[Ca ²⁺]	F ₀ (counts)
	value		(mol⋅kg _w -1)	(counts)	value		(mol⋅kg _w -1)	
1	8.97	1.00	0	2.64E+07	8.97	1.00	0	2.76E+07
2	8.48	1.05	1.10E-04	3.20E+07	8.16	1.64	2.98E-04	2.79E+07
3	8.36	1.10	1.94E-04	4.81E+07	8.12	1.92	4.19E-04	3.01E+07
4	8.16	1.52	2.98E-04	3.08E+07	7.98	4.20	6.13E-04	3.02E+07
5	8.12	1.76	4.19E-04	3.82E+07	7.95	5.14	1.01E-03	3.99E+07
6	8.05	2.47	6.13E-04	4.30E+07	7.92	6.33	1.80E-03	5.58E+07
7	8.00	3.31	1.01E-03	4.34E+07	7.88	8.42	2.56E-03	5.14E+07
8	7.93	5.24	1.80E-03	5.57E+07	7.85	10.50	3.30E-03	5.58E+07
9	7.82	8.04	2.56E-03	5.64E+07	7.80	15.29	4.25E-03	6.60E+07
10	7.78	15.78	3.30E-03	7.19E+07	7.75	22.42	5.59E-03	7.22E+07
11	7.72	19.87	4.25E-03	7.94E+07	7.73	26.18	7.70E-03	8.28E+07
12	7.69	27.09	5.59E-03	1.00E+08	7.70	33.06	9.09E-03	9.48E+07
13	7.65	34.25	7.70E-03	1.00E+08				
14	7.62	43.35	9.09E-03	1.20E+08				

Table S6. Values of the Debye-Hückel parameters A(T) at different temperatures, taken from the NEA-TDB reviews.⁷

t/°C (p = 1bar)	A(T) / kg ^{1/2} mol ^{-1/2}
5	0.494
10	0.497
15	0.501
20	0.505
25	0.509
30	0.513
35	0.518
40	0.523
50	0.533
75	0.564

Table S7 The formation constants of log₁₀K₀₁₃°, log₁₀Q₁ and log₁₀Q₂ in the temperature range of 5-90°C, calculated using the exiting general formula; the global formation constants of log₁₀β₁₁₃°(Ca), log₁₀β₂₁₃°(Ca) and log₁₀β°₁₁₃ (Mg) were estimated with the Van't Hoff Equation; the formation constants of log₁₀K°₁₁₃ (Ca), $log_{10}K^{\circ}_{213}(Ca)$, $log_{10}K^{\circ}_{113}$ (Mg) were finally determined by subtracting the sum of $log_{10}K^{\circ}_{013}$, $log_{10}Q_1$ and $log_{10}Q_2$ from the global equilibrium constants $log_{10}\beta^{\circ}_{113}$ (Ca), $\log_{10}\beta^{\circ}_{213}$ (Ca) and $\log_{10}\beta^{\circ}_{113}$ (Mg).

T (°C)	log ₁₀ K° ₀₁₃ Götz <i>et</i> <i>al.</i> ⁸	log ₁₀ Q ₁ Patterson <i>et</i> al. ⁹	log ₁₀ Q ₂ Patterson <i>et</i> <i>al.</i> ¹⁰	log ₁₀ β° ₁₁₃ (Ca)	log ₁₀ β° ₂₁₃ (Ca)	log ₁₀ β° ₁₁₃ (Mg)	log10K°113(Ca)	log ₁₀ K° ₂₁₃ (Ca)	log ₁₀ K° ₁₁₃ °(Mg)
5	22.48	-6.51	-10.56	-6.06	-19.35	-6.93	5.60	9.37	4.72
10	22.28	-6.46	-10.49	-6.04	-19.29	-6.95	5.57	9.27	4.67
15	22.11	-6.41	-10.43	-6.03	-19.23	-6.96	5.55	9.20	4.63
20	21.95	-6.38	-10.38	-6.02	-19.18	-6.97	5.55	9.15	4.60
22	21.93	-6.37	-10.36	-6.02	-19.16	-6.97	5.51	9.10	4.55
25	21.81	-6.35	-10.34	-6.01	-19.13	-6.98	5.55	9.12	4.58
35	21.58	-6.31	-10.26	-5.99	-19.08	-6.99	5.56	9.18	4.57
40	21.48	-6.29	-10.23	-5.98	-18.98	-7.00	5.58	9.11	4.56
45	21.40	-6.28	-10.20	-5.98	-18.94	-7.01	5.60	9.13	4.55
50	21.33	-6.28	-10.18	-5.97	-18.89	-7.02	5.62	9.16	4.56
55	21.27	-6.28	-10.16	-5.96	-18.85	-7.03	5.65	9.20	4.56
60	21.22	-6.28	-10.15	-5.95	-18.80	-7.04	5.68	9.25	4.57
65	21.18	-6.29	-10.13	-5.94	-18.76	-7.05	5.71	9.31	4.58
70	21.15	-6.29	-10.12	-5.94	-18.72	-7.05	5.75	9.38	4.60
75	20.96	-6.30	-10.12	-5.93	-18.69	-7.06	5.96	9.62	4.62
80	20.88	-6.32	-10.11	-5.92	-18.65	-7.07	6.06	9.77	4.82
85	20.81	-6.33	-10.11	-5.91	-18.61	-7.08	6.17	9.92	4.90
90	20.73	-6.35	-10.11	-5.91	-18.58	-7.09	6.29	10.09	5.00

 K_{013} : $UO_2^{2+} + 3CO_3^{2-} \neq UO_2(CO_3)_3^{4-}$ (Eq. 14 in the manuscript)

 $Q_1: CO_2(aq) + H_2O \rightleftharpoons H^+ + HCO_3^-$

Q₂: HCO₃⁻ $\stackrel{"}{\approx}$ H⁺ + CO₃²⁻ (Q₁ + Q₂ = Eq. 14 in the manuscript)

 $\beta_{113}^{\circ}(Ca): Ca^{2+} + UO_2^{2+} + 2CO_2(aq) + CO_3^{2-} + 2H_2O(I) \rightleftharpoons CaUO_2(CO_3)_3^{2-} + 4H^+$ (Eq. 15 in the manuscript)

 $\beta_{213}^{\circ}(Ca): 2Ca^{2+} + UO_2^{2+} + 3CO_2(aq) + 3H_2O(I) \rightleftharpoons Ca_2UO_2(CO_3)_3(aq) + 6H^+$ (Eq. 16 in the manuscript)

 $\beta_{113}^{\circ}(Mg): Mg^{2+} + UO_2^{2+} + 2CO_2(aq) + CO_3^{2-} + 2H_2O(I) \rightleftharpoons MgUO_2(CO_3)_3^{2-} + 4H^+$ (Eq. 15 in the manuscript)

 $K_{113}^{\circ}(Ca)$: $Ca^{2+}+UO_2(CO_3)_3^{4-} \rightleftharpoons CaUO_2(CO_3)_3^{2-}(Eq. 2 \text{ in the manuscript})$

 K_{213}° (Ca): 2Ca²⁺+UO₂(CO₃)₃⁴⁻ \Rightarrow Ca₂UO₂(CO₃)₃ (Eq. 2 in the manuscript) K_{113}° (Mg): Mg²⁺+UO₂(CO₃)₃⁴⁻ \Rightarrow MgUO₂(CO₃)₃²⁻ (Eq. 2 in the manuscript)

Table S8 Decay-times of Mg/Ca_nUO₂(CO₃)₃²ⁿ⁻⁴ in 0.10 mol kg_w⁻¹ NaCl at variable temperatures: 5-30°C for Mg²⁺ and 10-50°C for Ca²⁺. The values were deduced by averaging the measured decay-times of correspondent sample solutions that gave the slope of 1 or 2 in slope analysis (shown in Fig. 6 for Ca_nUO₂(CO₃)₃²ⁿ⁻⁴ and in Fig. 7 for MgUO₂(CO₃)₃²⁻). The values at 22°C were obtained in our previous studies.

T(°C)	MgUO ₂ (CO ₃) ₃ ²⁻ (ns)	CaUO ₂ (CO ₃) ₃ ²⁻ (ns)	Ca ₂ UO ₂ (CO ₃) ₃ (ns)
5	33.80 ± 2.07	/	/
10	25.80 ± 0.85	48.52 ± 2.84	64.13 ± 1.89
15	22.98 ± 0.80	36.70 ± 2.60	53.84 ± 1.47
22	23.47 ± 1.57^4	28.30 ± 0.57^5	46.68 ± 2.70 ⁵
25	/	22.19 ± 1.01	31.97 ± 1.14
30	18.49 ± 0.53	/	1
35	/	16.18 ± 0.70	22.06 ± 0.82
40	/	16.02 ± 0.38	20.07 ± 0.89
45	/	16.60 ± 0.70	17.70 ± 0.71
50	/	17.17 ± 1.16	16.73 ± 1.10

Table S9 Characteristic decomposition parameters of the pure spectral components of $Ca_nUO_2(CO_3)_3^{(4-2n)-}$ and $MgUO_2(CO_3)_3^{2-}$ shown in Fig. S2 and Fig. S3.

Peak index	Peak Type	FWHM	Center	Area IntgP
CaUO ₂ (CO ₃) ₃ ²⁻				
1	Gaussian	23.10	479.58	14.98
2	Gaussian	17.97241	496.618	28.22
3	Gaussian	17.17688	514.51	24.26
4	Gaussian	23.7694	533.45	16.11
5	Gaussian	52.32048	552.16	16.42
Peak index	Peak Type	FWHM	Center	Area IntgP
Ca ₂ UO ₂ (CO ₃) ₃ (aq)				
1	Gaussian	13.65	465.01	14.54
2	Gaussian	13.69	484.14	27.03
3	Gaussian	15.97	504.62	28.42
4	Gaussian	17.37	525.98	17.13
5	Gaussian	23.51	548.13	9.13
6	Gaussian	34.64	576.52	3.76
Peak index	Peak Type	FWHM	Center	Area IntgP
MgUO ₂ (CO ₃)3 ²⁻				
1	Gaussian	24.15	465.60	21.44
2	Gaussian	15.45	484.98	21.17
3	Gaussian	17.89	502.85	22.221
4	Gaussian	26.34	523	16.81
5	Gaussian	59.05	545.93	18.38

Fig. S1. Calibration lines in the temperature range of $5-50^{\circ}$ C and the pH values corresponding to the zero point of electrode at 5° C and 50° C.

Fig. S2. Gaussian decomposition of the luminescence spectrum of the pure spectral components of (a) $CaUO_2(CO_3)_3^{2-}$ and (b) $Ca_2UO_2(CO_3)_3(aq)$ normalized to the same area by the MCR-ALS analysis.

Fig. S3. Gaussian decomposition of the luminescence spectrum of the pure spectral components of MgUO₂(CO₃)_{3²⁻} normalized to the same area by the MCR-ALS analysis.

Fig. S4. Change in main oxidation states of Fe, S, C, U (a) and variation of pH and pe (b) as a function of temperature for Boom clay equilibrium waters,¹¹ $P(O_2) = 10^{-68.67}$ atm using thermodynamic data from the Thermochimie 10a database,¹² implementing SrUO₂(CO₃)₃^{2-,13} specific ion interaction coefficients of Mg_n/Ca_nUO₂(CO₃)₃^{(4-2n)-,4-6} and their $\Delta_r H^{\circ}_m$ values determined in this work based on the isoelectric reaction approximation.

Fig. S5. Change in main oxidation states of Fe, S, C, U (a) and variation of pH and pe (b) as a function of temperature for Callovo-Oxfordian clay equilibrium water,¹⁴ $P(O_2) = 10^{-65.83}$ atm using thermodynamic data from the Thermochimie 10a database,¹² implementing SrUO₂(CO₃)₃^{2-,13} specific ion interaction coefficients of Mg_n/Ca_nUO₂(CO₃)₃^{(4-2n)-,4-6} and their $\Delta_r H^{\circ}_m$ values determined in this work based on the isoelectric reaction approximation.

Fig. S6 Solubility of UO₂:2H₂O(am) (a) and aqueous uranium speciation (b) change in main oxidation states of Fe, S, C, U (c) and variation of pH, pe (d), as a function of temperature for Callovo-Oxfordian clay equilibrium waters,¹⁴ $P(O_2) = 10^{-65.83}$ atm using thermodynamic data from the Thermochimie 10a database,¹² implementing SrUO₂(CO₃)₃^{2-,13} specific ion interaction coefficients of Mg_n/Ca_nUO₂(CO₃)₃^{(4-2n)- 4-6} and their $\Delta_r H^{\circ}_m$ values determined in this work based on the isoelectric reaction approximation. The reduction reactions of S(+VI) to lower oxidations states were prevented in the input PhreeqC file.

Fig. S7 Solubility of UO₂(cr) as a function of temperature (a) for Boom clay equilibrium waters,¹¹ $P(O_2) = 10^{-68.67}$ atm and (b) for Callovo-Oxfordian clay equilibrium waters,¹⁴ $P(O_2) = 10^{-65.83}$ atm using thermodynamic data from the Thermochimie 10a database,¹² implementing SrUO₂(CO₃)₃^{2-,13} specific ion interaction coefficients of Mg_n/Ca_nUO₂(CO₃)₃⁽⁴⁻²ⁿ⁾⁻⁴⁻⁶ and their $\Delta_r H^{\circ}_m$ values determined in this work based on the isoelectric reaction approximation.

References

- 1. Y. C. Wu, W. F. Koch and R. A. Durst, *Standardization of pH measurements*, Report 260-53, US Department. of Commerce, National Bureau of Standards, 1988. http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nbsspecialpublication260-53e1988.pdf
- 2. R. Guillaumont, T. Fanghänel, V. Neck, J. Fuger, D. A. Palmer, I. Grenthe and M. H. Rand, *Update of the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium*, OECD Nuclear Energy Agency, Data Bank, Issy-les-Moulineaux, France, 2003.
- 3. D. D. Wagman, W. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. Churney and R. L. Nuttall, *J. Phys. Chem. Ref. Data*, 1989, **11**, **Suppl. 2** 1-392.
- 4. C. Shang and P. Reiller, *Dalton Trans.*, 2021, **50**, 4363-4379.
- 5. C. Shang and P. E. Reiller, *Dalton Trans.*, 2020, **49**, 466-481.
- 6. C. Shang, P. E. Reiller and T. Vercouter, *Dalton Trans.*, 2020, **49**, 15443-15460.
- R. J. Lemire, J. Fuger, H. Nitsche, P. Potter, M. Rand, J. Rydberg, K. Spahiu, J. C. Sullivan, W. J. Ullman, P. Vitorge and H. Wanner, *Chemical Thermodynamics 4. Chemical Thermodynamics of Neptunium and Plutonium, Chemical Thermodynamics*, North Holland Elsevier Science Publishers B. V., Amsterdam, The Netherlands, 2001.
- 8. C. Götz, G. Geipel and G. Bernhard, in *Uranium, Mining and Hydrogeology*, eds. B. J. Merkel and A. Hasche-Berger, Springer, Berlin, Heidelberg, Germany, 2008, DOI: 10.1007/978-3-540-87746-2_118, pp. 907-914.
- 9. C. S. Patterson, G. H. Slocum, R. H. Busey and R. E. Mesmer, *Geochim. Cosmochim. Acta*, 1982, **46**, 1653-1663.
- 10. C. S. Patterson, R. H. Busey and R. E. Mesmer, J. Solution Chem., 1984, 13, 647-661.
- 11. M. de Craen, L. Wang, M. Van Geet and H. Moors, *Geochemistry of Boom Clay pore water at the Mol site*, Report SCK•CEN-BLG-990, SCK•CEN, Mol, Belgium, 2004. <u>http://jongeren.sckcen.be/~/media/Files/Science/disposal_radioactive_waste/Geochemistry_of_Boom_Clay_pore_Status_2004.pdf</u>
- 12. Thermochimie Database, <u>http://www.thermochimie-tdb.com/</u>.
- 13. W. Dong and S. C. Brooks, *Environ. Sci. Technol.*, 2006, **40**, 4689-4695.
- 14. E. C. Gaucher, C. Tournassat, F. J. Pearson, P. Blanc, C. Crouzet, C. Lerouge and S. Altmann, *Geochim. Cosmochim. Acta*, 2009, **73**, 6470-6487.