Supporting Information

Role of the (Pseudo)Halido Ligand in Ruthenium(II) *p*-Cymene α-Amino

Acid Complexes on Speciation, Protein Reactivity and Cytotoxicity

Lorenzo Biancalana,^a Emanuele Zanda,^a Mouna Hadiji,^b Stefano Zacchini,^c Alessandro Pratesi,^a Guido Pampaloni,^a Paul J. Dyson ^b and Fabio Marchetti ^a

^a University of Pisa, Dipartimento di Chimica e Chimica Industriale, Via G. Moruzzi 13, I-56124 Pisa,

Italy.

^b Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.

^c University of Bologna, Dipartimento di Chimica Industriale "Toso Montanari", Viale Risorgimento 4, I-40136 Bologna, Italy.

Table of contents	Pages
Synthesis of $[RuX_2(\eta^6-p-cymene)]_2$ (X = Br, I) (Charts S1-S2)	S2-S3
Comparison of diastereomeric ratios and spectroscopic data (Tables S1-S2)	S4-S5
IR (solid state) and ¹ H/ ¹³ C/ ¹⁴ N/ ³¹ P NMR spectra (Figures S1-S56)	S6-S42
X-ray structural data (Figure S57-S60, Table S3)	S43-S46
Speciation in water and in cell culture medium (Figures S61-S72)	S47-S58
Stability in water and in cell culture medium (Figures S73-S79)	S59-S65
UV-Vis spectra of 2d for Log <i>P</i> _{ow} measurement (Figure S80)	S66
Mass spectra following incubation with Cyt c (Figures S81-S87)	S67-S70
References	S71

Synthesis of $[RuX_2(\eta^6-p-cymene)]_2$ (X = Br, I)

[RuBr₂(η^6 -*p*-cymene)]₂ (Chart S1).

Chart S1. Structure of [RuBr₂(n⁶-*p*-cymene)]₂ (numbering refers to C atoms).

A suspension of $[\text{RuCl}_2(\eta^6\text{-}p\text{-}\text{cymene})]_2$ (186 mg, 0.304 mmol) and NaBr (164 mg, 1.59 mmol) in a H₂O/MeOH 1:1 *v/v* mixture (*ca.* 10 mL) was vigorously stirred at room temperature for 2 h. Next, volatiles were removed under vacuum and the residue was suspended in CH₂Cl₂. The mixture was filtered through celite and the filtrate was dried under vacuum. NaBr (*ca.* 160 mg) was added, and the procedure was repeated (×3). The final residue was suspended in Et₂O and filtered. The resulting bright orange-red solid was washed with Et₂O and dried under vacuum (40 °C, over P₂O₅). Yield: 232 mg, 97%. Soluble in acetone, CH₂Cl₂, CHCl₃, poorly soluble in H₂O and E₂O. Anal. Calcd. For C₂₀H₂sBr₄Ru₂: C, 30.40; H, 3.57. Found: C, 29.96; H, 3.38. IR (solid state): \tilde{v} /cm⁻¹ = 3048w, 3034m, 2956m, 2924m-sh, 2867w, 1527w, 1493m, 1469s, 1442s-sh, 1407m, 1385s, 1377s-sh, 1363m-sh, 1324m, 1274m, 1198m, 1156m, 1114m, 1087m, 1055s, 1028s-sh, 1004m, 957w, 825wm 903w, 876s, 861s,803s, 727s, 692m, 689m, 667m. ¹H NMR (CDCl₃): δ /ppm = 5.49 (d, ³*J*_{HH} = 5.9 Hz, 2H, C⁴H), 5.37 (d, ³*J*_{HH} = 5.9 Hz, 2H, C³H), 2.95 (h, ³*J*_{HH} = 6.9 Hz, 1H, C⁶H), 2.21 (s, 3H, C¹H), 1.26 (d, ³*J*_{HH} = 6.9 Hz, 6H, C⁷H).

$[RuI_2(\eta^6-p-cymene)]_2$ (Chart S2).

Chart S2. Structure of $[Rul_2(\eta^6-p-cymene)]_2$ (numbering refers to C atoms).

A suspension of [RuCl₂(η^6 -*p*-cymene)]₂ (401 mg, 0.550 mmol) and NaI (597 mg, 3.98 mmol) in acetone (35 mL) was stirred at reflux temperature for 2.5 h. The resulting red/violet suspension was cooled to room temperature and taken to dryness under vacuum. The residue was suspended in CH₂Cl₂ and the suspension was filtered twice on a celite pad. Volatiles were removed under vacuum from the filtrate solution, affording a dark Bordeaux-red solid. The solid was washed with hexane then dried under vacuum (40 °C, over P₂O₅). Yield: 577 mg, 90%. Soluble in acetone, CH₂Cl₂, CHCl₃, poorly soluble in EtOH, Et₂O, insoluble in H₂O, petroleum ether and MeOH. Anal. Calcd. For C₂₀H₂₈I₄Ru₂: C, 24.56; H, 2.89. Found: C, 24.79; H, 2.77. IR (solid state): $\tilde{\nu}$ /cm⁻¹ = 3028w, 2961m, 2924w, 2866w, 1902w, 1865w, 1785w, 1759w, 1735w, 1689w, 1530w, 1496w, 1469s, 1441w, 1407w, 1381s, 1375s, 1359m-sh, 1324w, 1296m, 1277m, 1211m, 1197m, 1156m, 1141m, 1115m, 1085m, 1055s, 1025s, 1006m, 958w, 923m, 888m, 866s, 801m, 734w, 659w. ¹H NMR (CDCl₃): δ /ppm = 5.53 (d, ³*J*_{HH} = 5.9 Hz, 2H, C⁴H), 5.43 (d, ³*J*_{HH} = 5.8 Hz, 2H, C³H), 3.01 (hept, ³*J*_{HH} = 6.9 Hz, 1H, C⁶H), 2.36 (s, 3H, C¹H), 1.25 (d, ³*J*_{HH} = 6.9 Hz, 6H, C⁷H).

Comparison of diastereomeric ratios and spectroscopic data.

0	Amino acid	Monodentate	Diastereomeric ratio		
Compound		ligand	Methanol (CD₃OD)	Water (D ₂ O) ^[a]	
1a	L-proline	CI⁻	6.5 ^[b]	7	
1b	"	Br⁻	8	6	
1c	"	I-	6.5	16	
1d	"	NCS⁻	2	1	
1e	"	N ₃ ⁻	4	2.5	
1f	"	NO₂ [−]	5	n.d.	
1g	"	CN⁻	8	n.d.	
[1w]⁺	"	H ₂ O	n.d.	2.6	
2a	<i>trans</i> -4-hydroxy-L- proline	Cl⁻	2 ^[b]	3.5	
2b	"	Br⁻	4	5	
2c	"	I-	5	6.5	
2d	"	NCS⁻	1	1.5	
2e	"	N₃ [−]	1.5	2	
[2w]+	"	H ₂ O	n.d.	1.5	
3a	L-serine	CI⁻	1.4 ^[b]	1.4	
[3-PPh ₃] ^{+ [c]}	"	PPh ₃	5 ^[b]	5 ^[b]	
[3i]⁺	ű	pta	1.3	1.3	

Table S1. Diastereomeric ratios of $[RuX(\kappa^2N, O-amino carboxylate)(\eta^6-p-cymene)]$ complexes in CD₃OD or D₂Osolution by ¹H NMR.

 $[Ru(\kappa^2 N, O-L-Ser)(PPh_3)(\eta^6-p-cymene)]^+$.

Compound	Amino acid	Monodentate ligand X	¹³ C NMR: ^[a] δ / ppm	¹⁴ N NMR: ^[a] δ / ppm	IR (solid state): ^[b] ῦ / cm ⁻¹
KSCN	-		133	- 180	v(NCS): 2043, 2002
[Ru(SCN)₂(η ⁶ - <i>p</i> - cymene)]₂	-	SCN⁻	137, 136, 134 (<u>N</u> CS) 125 (<u>S</u> CN)	- 279	v(NCS): 2146 (<u>S</u> CN), 2094 (<u>N</u> CS)
1d	Pro		139	- 264	v(NCS): 2094, 2054
2d	Нур		139	- 264	v(NCS): 2089, 2050
NaN ₃	-		-	- 134, - 285	v(N ₃): 2140 ^[c]
[Ru(N₃)₂(η ⁶ - <i>p</i> - cymene)]₂	-		-	- 129, - 234	v(N ₃): 2059, 2040
[Ru(N ₃) ₂ (η ⁶ -C ₆ Me ₆)] ₂	-	N ₃ ⁻	-	-	v(N ₃): 2064, 2024 ^[c]
1e	Pro		-	- 130, - 241	v(N ₃): 2027
2e	Нур		-	- 130, - 240	v(N ₃): 2025
NaNO ₂	-	NO	-	230	v _{asym} (NO ₂): 1324sh. v _{sym} (NO ₂): 1226
1f	Pro	NO2	-	- 349	v _{asym} (NO ₂): 1365 v _{sym} (NO ₂): 1304
KCN	-	CN-	98 ^[d]	-	v(CN): 2077 ^[c]
1g	Pro		139	-	v(CN): 2105

Table S2. IR/NMR fingerprints of SCN⁻, N₃⁻, CN⁻, NO₂⁻ coordination in [RuX₂(η⁶-*p*-cymene)]₂ and [RuX(κ²N,Oamino carboxylate)(η⁶-*p*-cymene)] complexes and reference sodium/potassium salts.

[a] NMR data in CD₃OD except [Ru(SCN)₂(η^6 -*p*-cymene)]₂, [Ru(N₃)₂(η^6 -*p*-cymene)]₂ (¹³C, ¹⁴N NMR) and **1d** (¹⁴N NMR) (in acetone) and KCN (in water). [b] Shoulder peak of the SCN absorption in *italic*. [c] IR data taken from the literature.² [d] NMR data taken from the literature.³

IR (solid state) and ¹H/¹³C/¹⁴N/³¹P NMR spectra.

Figure S2. Solid-state IR spectrum (650-4000 cm⁻¹) of [Rul₂(η⁶-*p*-cymene)]₂.

Figure S3. Solid-state IR spectrum (650-4000 cm⁻¹) of [Ru(SCN)₂(η⁶-*p*-cymene)]₂.

Figure S4. Solid-state IR spectrum (650-4000 cm⁻¹) of $[Ru(N_3)_2(\eta^6-p-cymene)]_2$.

Figure S5. Solid-state IR spectrum (650-4000 cm⁻¹) of [RuBr($\kappa^2 N$, O-Pro)(η^6 -*p*-cymene)], **1b**.

Figure S6. Solid-state IR spectrum (650-4000 cm⁻¹) of [Rul($\kappa^2 N$, O-Pro)(η^6 -*p*-cymene)], **1c**.

Figure S7. Solid-state IR spectrum (650-4000 cm⁻¹) of [Ru(κN -NCS)($\kappa^2 N$, O-Pro)(η^6 -*p*-cymene)], **1d**.

Figure S8. Solid-state IR spectrum (650-4000 cm⁻¹) of [Ru(N₃)(κ^2 N,O-Pro)(η^6 -p-cymene)], 1e.

Figure S9. Solid-state IR spectrum (650-4000 cm⁻¹) of [Ru(κN -NO₂)($\kappa^2 N$, O-Pro)(η^6 -p-cymene)], 1f.

Figure S10. Solid-state IR spectrum (650-4000 cm⁻¹) of [Ru(CN)(κ²N,O-Pro)(η⁶-*p*-cymene)], **1g**.

Figure S111. Solid-state IR spectrum (650-4000 cm⁻¹) of [RuBr($\kappa^2 N$, O-Hyp)(η^6 -*p*-cymene)], **2b**.

Figure S12. Solid-state IR spectrum (650-4000 cm⁻¹) of [Rul($\kappa^2 N$, O-Hyp)(η^6 -p-cymene)], **2c**.

Figure S13. Solid-state IR spectrum (650-4000 cm⁻¹) of [Ru(κ*N*-NCS)(κ²*N*,*O*-Hyp)(η⁶-*p*-cymene)], **2d**.

Figure S14. Solid-state IR spectrum (650-4000 cm⁻¹) of [Ru(N₃)($\kappa^2 N$, O-Hyp)(η^6 -p-cymene)], 2e.

Figure S15. Solid-state IR spectrum (650-4000 cm⁻¹) of [Ru(κ³*N*,*O*,*O*'-Ser)(η⁶-*p*-cymene)], **3h**.

Figure S16. Solid-state IR spectrum (650-4000 cm⁻¹) of [Ru($\kappa^3 N$, *O*, *O'*-Thr)(η^6 -*p*-cymene)], **4h**.

Figure S17. Solid-state IR spectrum (650-4000 cm⁻¹) of [Ru(κ³*N*,*O*,*O*'-Hom)(η⁶-*p*-cymene)], **5h**.

Figure S18. Solid-state IR spectrum (650-4000 cm⁻¹) of [Ru($\kappa^2 N$, O-Ser)(κP -pta)(η^6 -p-cymene)]Cl, [**3i**]Cl.

Figure S19. ¹H NMR spectrum (401 MHz, CDCl₃) of [RuBr₂(η⁶-*p*-cymene)]₂.

Figure S20. ¹H NMR spectrum (401 MHz, CDCl₃) of [Rul₂(η⁶-*p*-cymene)]₂.

Figure S21. ¹H NMR spectrum (401 MHz, acetone-d₆) of [Ru(SCN)₂(η⁶-*p*-cymene)]₂.

Figure S22. ¹³C{¹H} NMR spectrum (101 MHz, acetone-d₆) of [Ru(SCN)₂(η⁶-*p*-cymene)]₂.

Figure S23. ¹H NMR spectrum (401 MHz, CDCl₃) of [Ru(N₃)₂(η⁶-*p*-cymene)]₂.

Figure S24. ¹H NMR spectrum (401 MHz, CD₃OD) of [RuBr($\kappa^2 N$, O-Pro)(η^6 -*p*-cymene)], **1b**. Only resonances due to the major isomer are marked.

-186.4 -102.3 85.1 84.5 80.9 80.4 -64.0 32.3 30.0 27.9 23.0 18.5 Ru Br 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 ppm

Figure S25. ¹³C{¹H} NMR spectrum (101 MHz, CD₃OD) of [RuBr(κ²N, O-Pro)(η⁶-*p*-cymene)], **1b**.

Figure S26. ¹H NMR spectrum (401 MHz, CD₃OD) of [Rul($\kappa^2 N$, *O*-Pro)(η^6 -*p*-cymene)], **1c**. Only resonances due to the major isomer are marked.

Figure S27. ¹³C{¹H} NMR spectrum (101 MHz, CD₃OD) of [Rul(κ²*N*, *O*-Pro)(η⁶-*p*-cymene)], **1c**.

Figure S28. ¹H NMR spectrum (401 MHz, CD₃OD) of [Ru(κ *N*-NCS)(κ ²*N*,*O*-Pro)(η ⁶-*p*-cymene)], **1d**.

Figure S29. ¹³C{¹H} NMR spectrum (101 MHz, CD₃OD) of [Ru(κ*N*-NCS)(κ²*N*, *O*-Pro)(η⁶-*p*-cymene)], **1d**.

Figure S30. ¹H NMR spectrum (401 MHz, CD₃OD) of [Ru(N₃)($\kappa^2 N$, O-Pro)(η^6 -*p*-cymene)], **1e**.

Figure S31. ¹³C{¹H} NMR spectrum (101 MHz, CD₃OD) of [Ru(N₃)(κ²N, O-Pro)(η⁶-*p*-cymene)], **1e**.

Figure S32. ¹H NMR spectrum (401 MHz, CD₃OD) of [Ru(κN -NO₂)($\kappa^2 N$, O-Pro)(η^6 -*p*-cymene)], **1f**. Only resonances due to the major isomer are marked.

Figure S34. ¹H NMR spectrum (401 MHz, CD₃OD) of [Ru(CN)($\kappa^2 N$, O-Pro)(η^6 -*p*-cymene)], **1g**. Only resonances due to the major isomer are marked.

Figure S35. ¹³C{¹H} NMR spectrum (101 MHz, CD₃OD) of [Ru(CN)(κ²N, O-Pro)(η⁶-*p*-cymene)], **1g**.

Figure S36. ¹H NMR spectrum (401 MHz, CD₃OD) of [RuBr($\kappa^2 N$, O-Hyp)(η^6 -*p*-cymene)], **2b**. Only resonances due to the major isomer are marked.

Figure S37. ¹³C{¹H} NMR spectrum (101 MHz, CD₃OD) of [RuBr($\kappa^2 N$, *O*-Hyp)(η^6 -*p*-cymene)], **2b**. Only resonances due to the major isomer are marked.

Figure S38. ¹H NMR spectrum (401 MHz, CD₃OD) of [Rul($\kappa^2 N$, *O*-Hyp)(η^6 -*p*-cymene)], **2c**. Only resonances due to the major isomer are marked.

Figure S39. ¹³C{¹H} NMR spectrum (101 MHz, CD₃OD) of [Rul($\kappa^2 N$, O-Hyp)(η^6 -*p*-cymene)], **2c**. Only resonances due to the major isomer are marked.

Figure S40. ¹H NMR spectrum (401 MHz, CD₃OD) of [Ru(κ*N*-NCS)(κ²*N*,O-Hyp)(η⁶-*p*-cymene)], **2d**.

Figure S41. ¹³C{¹H} NMR spectrum (101 MHz, CD₃OD) of [Ru(κ*N*-NCS)(κ²*N*, O-Hyp)(η⁶-*p*-cymene)], **2d**.

Figure S42. ¹H NMR spectrum (401 MHz, CD₃OD) of [Ru(N₃)($\kappa^2 N$, O-Hyp)(η^6 -*p*-cymene)], 2e.

Figure S43. ¹³C{¹H} NMR spectrum (101 MHz, CD₃OD) of $[Ru(N_3)(\kappa^2N, O-Hyp)(\eta^6-p-cymene)]$, **2e**. Only resonances due to the major isomer are marked.

Figure S44. ¹H NMR spectrum (401 MHz, CD₃OD) of [Ru($\kappa^3 N$, O, O'-Ser)(η^6 -*p*-cymene)], **3h**.

Figure S45. ¹³C{¹H} NMR spectrum (101 MHz, CD₃OD) of [Ru(κ³N, O, O'-Ser)(η⁶-*p*-cymene)], **3h**.

Figure S46. ¹H NMR spectrum (401 MHz, CD₃OD) of [Ru($\kappa^3 N$, O, O'-Thr)(η^6 -*p*-cymene)], **4h**.

Figure S47. ¹³C{¹H} NMR spectrum (101 MHz, CD₃OD) of [Ru(κ³N, O, O'-Thr)(η⁶-*p*-cymene)], **4h**.

Figure S48. ¹H NMR spectrum (401 MHz, CD₃OD) of [Ru($\kappa^3 N$, *O*, *O*'-Hom)(η^6 -*p*-cymene)], **5h**.

Figure S49. ¹³C{¹H} NMR spectrum (101 MHz, CD₃OD) of [Ru(κ³*N*,*O*,*O*'-Hom)(η⁶-*p*-cymene)], **5h**.

Figure S50. ¹H NMR spectrum (401 MHz, CD₃OD) of $[Ru_2(\mu-H)_2(\mu-CI)(\eta^6-p-cymene)_2]CI$. Signal marked with asterisk (*) are due to traces of **3h**.

Figure S51. ¹H NMR spectrum (401 MHz, CD₃OD) of [Ru($\kappa^2 N$, O-Ser)(κP -pta)(η^6 -p-cymene)]Cl, [**3i**]Cl. Inset shows NH resonances in the freshly-prepared solution.

Figure S52. ¹³C{¹H} NMR spectrum (101 MHz, D₂O) of [Ru(κ²N, O-Ser)(κ*P*-pta)(η⁶-*p*-cymene)]Cl, [**3i**]Cl.

Figure S54. ¹⁴N NMR spectra (29 MHz) of: KSCN in MeOH (a); $[Ru(SCN)_2(\eta^6-p\text{-cymene})]_2$ in acetone (b); $[Ru(\kappa N-NCS)(\kappa^2 N, O\text{-Pro})(\eta^6-p\text{-cymene})]$, **1d** in acetone (c); $[Ru(\kappa N-NCS)(\kappa^2 N, O\text{-Hyp})(\eta^6-p\text{-cymene})]$, **2d** in MeOH (d). Instrumental peak at – 72.2 ppm (*).

Figure S55. ¹⁴N NMR spectra (29 MHz) of: NaN₃ in MeOH (a); $[Ru(N_3)_2(\eta^6-p\text{-cymene})]_2$ in acetone (b); $[Ru(N_3)(\kappa^2N, O\text{-Pro})(\eta^6-p\text{-cymene})]$, **1e** in MeOH (c); $[Ru(N_3)(\kappa^2N, O\text{-Hyp})(\eta^6-p\text{-cymene})]$, **2e** in MeOH (d). Instrumental peak at – 72.2 ppm (*).

Figure S56. ¹⁴N NMR spectra (29 MHz, MeOH) of: NaNO₂ (a); $[Ru(\kappa N-NO_2)(\kappa^2 N, O-Pro)(\eta^6-p-cymene)]$, **1f (b)**. Instrumental peak at – 72.2 ppm (*).

X-ray structural data.

Figure S57. View of the X-ray structure of $[RuBr(\kappa^2N, O-Hyp)(\eta^6-p-cymene)]$, **2b.** Displacement ellipsoids are at the 50% probability level. Main bond distances (Å) and angles (°): $Ru(1)-(\eta^6-p-cymene)_{average}$ 2.18(6), Ru(1)-O(1), 2.108(18) Ru(1)-N(1) 2.16(2), Ru(1)-Br(1) 2.525(3), O(1)-C(1) 1.29(3), C(1)-O(2) 1.24(3), C(1)-C(2) 1.53(4), C(2)-C(3) 1.51(4), C(3)-C(4) 1.60(4), C(4)-C(5) 1.51(4), N(1)-C(2) 1.55(3), N(1)-C(5) 1.49(4), C(4)-O(3) 1.46(2), Ru(1)-O(1)-C(1) 117.1(16), O(1)-C(1)-C(2) 119(2), C(1)-C(2)-N(1) 108(2), C(2)-N(1)-Ru(1) 109.6(17), O(1)-Ru(1)-N(1) 77.9(8).

Figure S58. View of the X-ray structure of $[Rul(\kappa^2 N, O-Hyp)(\eta^6-p-cymene)]$, **2c**. Displacement ellipsoids are at the 50% probability level. Main bond distances (Å) and angles (°): $Ru(1)-(\eta^6-p-cymene)_{average}$ 2.19(4), Ru(1)-O(1) 2.144(11), Ru(1)-N(1) 2.142(12, Ru(1)-I(1) 2.7434(15), O(1)-C(1) 1.30(2), C(1)-O(2) 1.24(2), C(1)-C(2) 1.52(2), C(2)-C(3) 1.56(2), C(3)-C(4) 1.52(3), C(4)-C(5) 1.52(2), N(1)-C(2) 1.466(18), N(1)-C(5) 1.495(19), C(4)-O(3) 1.46(2), Ru(1)-O(1)-C(1) 114.2(9), O(1)-C(1)-C(2) 118.4(13), C(1)-C(2)-N(1) 109.4(12), C(2)-N(1)-Ru(1) 110.5(9), O(1)-Ru(1)-N(1) 76.2(4).

Figure S59. View of the X-ray structure of $[Ru(NO_2)(\kappa^2 N, O-Pro)(\eta^6-p-cymene)]$, **1f**. Displacement ellipsoids are at the 50% probability level. Main bond distances (Å) and angles (°): $Ru(1)-(\eta^6-p-cymene)_{average}$ 2.203(5), Ru(1)-O(1) 2.0694(17), Ru(1)-N(1) 2.1262(18), Ru(1)-N(2) 2.0888(18), O(1)-C(1) 1.289(3), C(1)-O(2) 1.236(3), C(1)-C(2) 1.521(3), C(2)-C(3) 1.536(3), C(3)-C(4) 1.530(4), C(4)-C(5) 1.522(3), N(1)-C(2) 1.514(3), N(1)-C(5) 1.501(3), N(2)-O(3) 1.247(3), N(2)-O(4) 1.242(3), Ru(1)-O(1)-C(1) 118.71(15), O(1)-C(1)-C(2) 117.5(2), C(1)-C(2)-N(1) 111.52(18), C(2)-N(1)-Ru(1) 111.08(14), O(1)-Ru(1)-N(1) 79.70(7), O(3)-N(2)-O(4) 118.5(2).

Figure S60. View of the X-ray structure of $[Ru(N_3)_2(\eta^6-p\text{-}cymene)]_2$ (**Ru-N3**). Displacement ellipsoids are at the 50% probability level. Main bond distances (Å) and angles (°): Ru(1)-(η^6 -p-cymene)_{average} 2.183(4), Ru(1)-N(1) 2.1063(15), Ru(1)-N(4) 2.1314(14), Ru(1)-N(4)_i 2.1610(14), N(1)-N(2) 1.193(2), N(2)-N(3) 1.160(2), N(4)-N(5) 1.222(2), N(5)-N(6) 1.140(2), Ru(1)-N(1)-N(2) 120.67(12), N(1)-N(2)-N(3) 176.90(18), Ru(1)-N(4)-Ru(1)_i 104.97(6), Ru(1)-N(4)-N(5) 121.88(11), N(4)-N(5)-N(6) 177.27(19), N(4)-Ru(1)-N(4)_i 75.03(6). Symmetry transformation used to generate equivalent atoms: -x+1,-y+1,-z+1.

Complex	D-H···A	d(D-H)	d(H…A)	d(D…A)	<(DHA)
2b *	O(3)-H(3)O(5)#1	0.84	1.90	2.72(2)	165.8
	N(1)-H(1)O(5)#1	1.00	2.21	3.07(3)	142.6
	O(6)-H(6)O(1)#2	0.84	2.04	2.84(3)	159.4
	N(2)-H(2A)O(2)#2	1.00	1.98	2.95(3)	160.4
2c	N(1)-H(1)O(2)#3	1.00	1.89	2.875(3)	166.3
	O(3)-H(3)O(1)#3	0.84	2.11	2.935(3)	166.6
	C(2)-H(2)O(1)#3	1.00	2.60	3.425(3)	139.5
2d	N(1)-H(1)O(2)#4	1.00	2.11	2.942(9)	139.3
	O(3)-H(3)O(2)#4	0.84	2.00	2.829(9)	167.7
2e	N(1)-H(1)O(2)#5	1.00	1.82	2.799(17)	167.0
	O(3)-H(3)O(1)#5	0.84	2.16	2.961(17)	159.1

Table S3	Hydrogen	bonds (′Å and °) for 2h	20.2	d and 2e
Table 33.	riyuruyen	DOLIDO (, anu) IUI ZU ,	ZU , Z	u anu ze

Symmetry transformations used to generate equivalent atoms: #1 -x+1,y+1/2,-z+2; #2 -x+1,y-1/2,-z+1; #3 -x+1,y-1/2,-z+3/2; #4 x-1,y,z; #5 x-1/2,-y+1/2,-z+1

* Two independent molecules are present within the unit cell.

Speciation in water and in cell culture medium.

[RuCl($\kappa^2 N$, *O*-Pro)(η^6 -*p*-cymene)], 1a, in D₂O.

1a. ¹H NMR (D₂O; with excess Cl⁻): δ/ppm = 5.94, 5.85 (d, J = 5.9 Hz, 1H); 5.74, 5.68 (app-t, J = 6.7 Hz, 2H); 5.59, 5.52 (d, J = 6.0 Hz, 1H); 4.07 (dd, J = 11.2, 5.9 Hz), 3.77 (d, J = 9.1 Hz) (1H); 3.44 (t, J = 8.6 Hz, 1H); 3.21 (td, J = 11.4, 5.9 Hz), 3.15–3.08 (m) (1H); 2.81 (hept, J = 6.9 Hz, 1H); 2.27–2.20 (m, 1H); 2.17, 2.15 (s, 3H); 2.06–1.97 (m, 1H); 1.89–1.79, 1.79–1.65 (m, 2H); 1.34, 1.29 (d, J = 6.9 Hz, 6H). Isomer ratio = 7.

[1w]⁺. ¹H NMR (D₂O): δ /ppm = 5.96–5.89 (m, 1H); 5.79–5.72 (m), 5.69 (d, *J* = 6.0 Hz) (2H); 5.59, 5.51 (d, *J* = 5.8 Hz, 1H); 4.06 (dd, *J* = 10.8, 5.1 Hz), 3.77 (t, *J* = 8.4 Hz) (1H); 3.36–3.18 (m), 2.66–2.54 (m) (2H), 2.82 (hept, *J* = 6.9 Hz, 1H); 2.19, 2.18 (s, 3H), 2.16–2.07, 1.34 – 1.25 (m, 1H) 2.06–1.92 (m, 1H), 1.85–1.63 (m, 2H). Isomer ratio = 2.6. CI⁻. ³⁵Cl NMR (D₂O): δ /ppm = 0.44 ($\Delta v_{1/2} = 22$ Hz).

Figure S61. ¹H NMR spectra (3-6 ppm region) of **1a** in D₂O: freshly prepared solution **(a)**, following AgNO₃ **(b)** or NaCl addition **(c)**. Spectra aligned to the **1a**/D₂O solution to compensate ionic strength effects on chemical shift.

[RuBr($\kappa^2 N$, *O*-Pro)(η^6 -*p*-cymene)], 1b, in D₂O.

1b. ¹H NMR (D₂O; with excess Br⁻): δ/ppm = 5.86, 5.81 (d, *J* = 5.9 Hz, 1H); 5.78, 5.73 (d, *J* = 6.1 Hz, 1H); 5.69–5.63 (m, 1H); 5.57, 5.49 (d, *J* = 6.0 Hz, 1H); 4.06 (dd, *J* = 11.0, 5.8 Hz, 1H); 3.50–3.45, 3.39–3.32 (m, 1H); 3.21 (td, *J* = 11.5, 5.6 Hz, 1H); 2.82 (hept, *J* = 6.9 Hz, 1H); 2.25–2.15 (m), 2.18 (s), 2.16 (s) (4H), 2.06–1.96 (m, 1H); 1.87–1.78, 1.76–1.63 (m, 2H); 1.33, 1.27 (d, *J* = 6.9 Hz, 6H). Isomer ratio = 6.

Br⁻. ⁸¹Br NMR (D₂O): δ /ppm = -3.4 ($\Delta v_{1/2} \approx 10^3$ Hz).

Figure S62. ¹H NMR spectra (3-6 ppm region) of **1b** in D_2O : freshly prepared solution **(a)**, following AgNO₃ **(b)** or NaBr addition **(c)**. Spectra aligned to the **1b**/ D_2O solution to compensate ionic strength effects on chemical shift.

[RuI($\kappa^2 N$, *O*-Pro)(η^6 -*p*-cymene)], 1c, in D₂O.

1c. ¹H NMR (D₂O; with excess I[−]): δ /ppm = 5.97, 5.91 (d, *J* = 6.0 Hz, 1H); 5.82 ,5.78 (d, *J* = 5.9 Hz, 1H); 5.74 (d, *J* = 5.9 Hz, 1H); 5.65, 5.58 (d, *J* = 6.0 Hz, 1H); 4.06 (dd, *J* = 11.1, 5.8 Hz, 1H), 3.58–3.49 (m, 1H), 3.23 (td, *J* = 11.4, 5.4 Hz, 1H), 2.85 (hept, *J* = 7.0 Hz, 1H); 2.27–2.15 (m), 2.19 (s), 2.17 (s), (4H); 2.05–1.96 (m, 1H), 1.79–1.65 (m, 2H); 1.33, 1.27 (d, *J* = 6.9 Hz, 6H). Isomer ratio ≈ 16. **I**⁻. ¹²⁷I NMR (D₂O): δ /ppm = -1.0 (br.).

Figure S63. ¹H NMR spectra (3-6 ppm region) of **1c** in D_2O : freshly prepared solution (**a**); following AgNO₃ (**b**) or Nal addition (**c**). Spectra aligned to the **1c**/ D_2O solution to compensate ionic strength effects on chemical shift.

[Ru(κN -NCS)($\kappa^2 N$, *O*-Pro)(η^6 -*p*-cymene)], 1d, in D₂O or D₂O/CD₃OD 5:2 v/v.

1d. ¹H NMR (D₂O): δ /ppm = 5.85 (d), 5.81 (app-t), 5.76 (d) (2H); 5.69–5.65 (m, 1H); 5.62, 5.55 (d, 1H), 4.01–3.95, 3.79–3.72 (m, 1H); 3.41–3.30 (m), 2.82–2.70 (m); 2.13, 2.12 (s, 3H), 1.32–1.24 (m, 6H). Isomer ratio \approx 1. Solubility of 1d in D₂O was insufficient to carry out a detailed speciation study. ¹H NMR (D₂O/CD₃OD 5:2): δ /ppm = 5.86 (d, *J* = 5.9 Hz), 5.83–5.81 (m, 1H), 5.76 (d, *J* = 6.1 Hz) (2H); 5.70–5.65 (m, 1H); 5.62, 5.56 (d, *J* = 5.8 Hz, 1H); 3.98 (dd, *J* = 11.2, 4.9 Hz), 3.73 (t, *J* = 8.7 Hz) (1H), 3.40–3.34, 3.26–3.17 (m, 1H); 3.09–3.00, 2.93–2.84 (m, 1H); 2.82–2.71 (m, 1H), 2.15, 2.14 (s, 1H); 2.05–1.93 (m, 1H), 1.84–1.62 (m, 2H); 1.32, 1.29 (d, *J* = 6.8 Hz, 6H). Isomer ratio = 1.2.

Figure S64. ¹H NMR spectra (3-6 ppm region) of **1d** in D₂O/CD₃OD 5:2: freshly prepared solution **(a)**, following KSCN **(b)** or AgNO₃ addition **(c)**; 24 h after AgNO₃ addition **(d)**. Spectra aligned to the **1d**/D₂O solution to compensate ionic strength effects on chemical shift.

[Ru(N₃)($\kappa^2 N$, *O*-Pro)(η^6 -*p*-cymene)], 1e, in D₂O.

1e. ¹H NMR (D₂O): δ/ppm = 5.77, 5.74 (d, *J* = 6.0 Hz, 1H); 5.71, 5.67 (d, *J* = 6.0 Hz, 1H); 5.59, 5.57 (d, *J* = 6.1 Hz, 1H); 5.54, 5.49 (d, *J* = 6.0 Hz, 1H); 3.96 (dd, *J* = 10.8, 5.3 Hz), 3.75 (t, *J* = 8.7 Hz) (1H); 3.33–3.27, 3.27–3.20 (m, 1H); 3.19–3.10, 2.71–2.62 (m, 1H); 2.78 (hept, *J* = 6.5 Hz, 1H), 2.26–2.16 (m, 1H); 2.16, 2.13 (s, 3H); 2.01–1.81 (m, 1H), 1.79–1.56 (m, 2H), 1.32–1.25 (m, 6H). Isomer ratio = 2.5.

Figure S65. ¹H NMR spectra (3-6 ppm region) of **1e** in D₂O: freshly prepared solution **(a)**; following NaN₃ **(b)** or AgNO₃ addition **(c)**; 24 h after AgNO₃ addition **(d)**. Spectra aligned to the **1e**/D₂O solution to compensate ionic strength effects on chemical shift.

[RuCl($\kappa^2 N$, *O*-Hyp)(η^6 -*p*-cymene)], 2a, in D₂O.

2a. ¹H NMR (D₂O, with excess Cl⁻): δ/ppm = 5.85 (d, *J* = 6.0 Hz), 5.84–5.82 (m) (1H); 5.77 (d, *J* = 5.4 Hz), 5.73–5.67 (m) (2H); 5.62, 5.55 (d, *J* = 6.1 Hz, 1H); 4.58–4.50, 4.44–4.38 (m, 1H); 4.06–3.96 (m, 1H); 3.66 (t, *J* = 9.0 Hz), 3.30 (d, *J* = 12.4 Hz) (1H); 3.42–3.36 (m, 1H); 2.81 (hept, *J* = 6.9 Hz, 1H); 2.25–2.19, 2.13–2.06 (m, 1H); 2.18, 2.16 (s, 3H), 2.03–1.93, 1.81–1.70 (m, 1H); 1.37 – 1.25 (m, 6H). Isomer ratio = 3.5.

[**2w**]⁺. ¹H NMR (D₂O): δ/ppm = 5.97–5.92 (m, 1H); 5.82–5.76 (m), 5.69 (d) (2H); 5.62, 5.55 (d, *J* = 6.1 Hz, 1H); 4.51, 4.41 (s-br, 1H); 4.05–3.97 (m, 1H), 3.51, (app-t, *J* = 9.1 Hz), 2.89–2.75* (m) (0.6H); 3.36, 3.28 (d, *J* = 12.6 Hz, 1H), 2.89–2.75* (m, 1.4H); 2.20 (s, 3H); 2.18–2.08 (m, 1H), 2.01–1.85, *1.70–1.57* (m, 1H), 1.35–1.20 (m, 6H). *Superimposed. Isomer ratio = 1.5.

Cl⁻. ³⁵Cl NMR (D₂O): δ /ppm = 0.34 ($\Delta v_{1/2}$ = 25 Hz).

Figure S66. ¹H NMR spectra (3-6 ppm region) of **2a** in D_2O : freshly prepared solution **(a)**; following AgNO₃ **(b)** or NaCl addition **(c)**. Spectra aligned to the **2a**/ D_2O solution to compensate ionic strength effects on chemical shift.

[RuBr($\kappa^2 N$, *O*-Hyp)(η^6 -*p*-cymene)], 2b, in D₂O.

2b. ¹H NMR (D₂O, with excess Br⁻): δ /ppm = 5.88 (br.), 5.78–5.73 (m), 5.69 (d, *J* = 5.9 Hz) (2H); 5.65, 5.61, 5.55 (d, *J* = 5.9 Hz), 5.51 (br.) (2H); 4.53–4.47, 4.37–4.33 (m, 1H); 4.02–3.91 (m, 1H); 3.65 (t, *J* = 9.0 Hz), 3.28 (d, *J* = 12.3 Hz) (1H); 3.52–3.48, 3.39–3.32 (m, 1H); 2.78 (hept, *J* = 6.8 Hz, 1H), 2.21–2.11 (m, 4H), 2.00–1.89; 1.83–1.72 (m, 1H); 1.34–1.20 (m, 6H). Isomer ratio = 5. **Br**⁻. ⁸¹Br NMR (D₂O): δ /ppm = $-1.9 (\Delta v_{1/2} \approx 8 \cdot 10^2 \text{ Hz}).$

Figure S67. ¹H NMR spectra (3-6 ppm region) of **2b** in D_2O : freshly prepared solution (**a**); following AgNO₃ (**b**) or NaBr addition (**c**). Spectra aligned to the **2b**/ D_2O solution to compensate ionic strength effects on chemical shift.

[RuI($\kappa^2 N$, *O*-Hyp)(η^6 -*p*-cymene)], 2c, in D₂O.

2c. ¹H NMR (D₂O, with excess Γ): δ/ppm = 6.04, 5.98 (d, J = 6.0 Hz, 1H); 5.93, 5.87, 5.85–5.81 (m, 2H); 5.73, 5.65 (d, J = 5.9 Hz, 1H); 4.64–4.60, 4.45–4.40 (m, 1H); 4.10 (d, J = 8.1 Hz), 4.07 (dd, J = 12.6, 1.8 Hz) (1H); 3.79 (t, J = 9.0 Hz), 3.74 (d, J = 3.7 Hz) (1H); 3.51 (dd, J = 12.5, 2.8 Hz), 3.48–3.44 (m) (1H); 2.91 (hept, J = 6.8 Hz, 1H); 2.27 (s), 2.24 (s), 2.23–2.18 (m) (4H), 2.15–2.04 (m, 1H); 1.38 (d, J = 6.9 Hz), 1.32 (d, J = 7.0 Hz) (6H). Isomer ratio = 6.5.

Figure S68. ¹H NMR spectra (3-6 ppm region) of **2c** in D_2O : freshly prepared solution **(a)**; following AgNO₃ **(b)** or Nal addition **(c)**. Spectra aligned to the **2c**/ D_2O solution to compensate ionic strength effects on chemical shift.

[Ru(κN -NCS)($\kappa^2 N$,O-Hyp)(η^6 -p-cymene)], 2d, in D₂O or D₂O/CD₃OD 5:2 v/v.

2d. ¹H NMR (D₂O): δ/ppm = 5.84 (app-t), 5.76 (d, J = 6.0 Hz) (2H); 5.68, 5.65, 5.57 (d, J = 6.0 Hz, 2H);
4.55–4.45 (m, 1H); 4.07–3.97 (m); 3.92 (d, J = 12 Hz) (1H); 3.59 (app-t, J = 8.8 Hz), 3.42–3.31 (m) (1H); 3.23, 3.08 (dd, J = 12, 3 Hz, 1H); 2.77 (hept, J = 6.9 Hz, 1H); 2.26–2.16 (m, 1H); 2.14, 2.13 (s, 3H); 2.05–1.97, 1.79–1.60 (m, 1H); 1.34–1.25 (m, 6H). Isomer ratio = 1.5. Solubility of 2d in D₂O was insufficient to carry out a detailed speciation study.

¹H NMR (D₂O/CD₃OD 5:2): δ/ppm = 5.86, 5.84, 5.77 (d, *J* = 6.1 Hz) (2H); 5.72–5.68 (m, 1H); 5.66, 5.58 (d, *J* = 6.1 Hz, 1H); 4.53–4.44 (m, 1H); 3.99 (dd, *J* = 11.2, 7.7 Hz), 3.92 (d, *J* = 12.2 Hz) (1H); 3.60–3.53, 3.37–3.34 (m, 1H); 3.20, 3.09 (dd, *J* = 12.8, 3.5 Hz, 1H); 2.78 (hept, *J* = 6.9 Hz, 1H); 2.26–2.10 (m), 2.16 (s), 2.15 (s) (4H); 2.05–1.97, 1.79–1.69 (m, 1H); 1.32, 1.29 (d, *J* = 6.9 Hz, 6H). *Superimposed to 2.16, 2.15. Isomer ratio = 1.3.

Figure S69. ¹H NMR spectra (3-6 ppm region) of **2d** in D₂O/CD₃OD 5:2: freshly prepared solution **(a)**, following KSCN **(b)** or AgNO₃ addition **(c)**; 24 h after AgNO₃ addition **(d)**. Spectra aligned to the **2d**/D₂O solution to compensate ionic strength effects on chemical shift.

[Ru(N₃)($\kappa^2 N$, *O*-Hyp)(η^6 -*p*-cymene)], 2e, in D₂O.

2e. ¹H NMR (D₂O): δ /ppm = 5.77 (app-t), 5.72, 5.67 (d, *J* = 5.9 Hz) (2H); 5.60, 5.56, 5.51 (d, *J* = 5.9 Hz, 2H); 4.49, 4.41 (app-t, *J* \approx 3 Hz); 3.99 (dd, *J* = 10.9, 8.0 Hz), 3.90 (d, *J* = 10.6 Hz) (1H); 3.53 (app-t, *J* = 8.8 Hz), 3.21 (d, *J* = 14 Hz) (1H); 3.32, 2.92 (dd; *J* = 12.6, 2.8 Hz) (1H); 2.79 (hept, *J* = 6.9 Hz); 2.23–2.07 (m), 2.17 (s), 2.14 (s) (4H); 2.03–1.93, 1.76–1.66 (m, 1H); 1.35–1.24 (m, 6H). Isomer ratio = 2.

Figure S70. ¹H NMR spectra (3-6 ppm region) of **2e** in D₂O: freshly prepared solution **(a)**, following NaN₃ **(b)** or AgNO₃ addition **(c)**, 24 h after AgNO₃ addition **(d)**. Spectra aligned to the **2e**/D₂O solution to compensate ionic strength effects on chemical shift.

[RuX($\kappa^2 N$, *O*-Pro)(η^6 -*p*-cymene)], X = Cl (1a), Br (1b), I (1c) in cell culture medium (DMEM-d).

Figure S71. ¹H NMR spectra (4-6 ppm region) of freshly prepared solutions of: **1a** in D₂O **(a)**; **1a (b)**, **1b (c)** or **1c (d)** in DMEM-d. Spectra aligned to the **1a**/D₂O solution to compensate ionic strength effects on chemical shift.

[RuX($\kappa^2 N$,*O*-Hyp)(η^6 -*p*-cymene)], X = Cl (2a), Br (2b), I (2c) in cell culture medium (DMEM-d).

Figure S72. ¹H NMR spectra (4-6 ppm region) of freshly prepared solutions of: **2a** in D₂O **(a)**; **2a (b)**, **2b (c)** or **2c (d)** in DMEM-d. Spectra aligned to the **1a**/D₂O solution to compensate ionic strength effects on chemical shift.

Stability in water and in cell culture medium.

[Ru(κN -NCS)($\kappa^2 N$,O-Pro)(η^6 -p-cymene)], 1d, in in D₂O/CD₃OD or DMEM-d/CD₃OD 5:2 v/v.

Figure S73. ¹H NMR spectra (3-6 ppm region) of: **1d** in $D_2O/CD_3OD 5:2 v/v$, freshly prepared solution (**a**) and after 48 h at 37 °C (**b**); **1d** in DMEM-d/CD₃OD 5:2 v/v, freshly prepared solution (**c**) and after 24 h at 37 °C (**d**); **1a** in D_2O (**e**). Spectral changes from (**a**) to (**b**) represent a variation in the diastereometric ratio.

[Ru(N₃)($\kappa^2 N$, *O*-Pro)(η^6 -*p*-cymene)], 1e, in D₂O and DMEM-d.

Figure S74. ¹H NMR spectra (3-6 ppm region) of: **1e** in D₂O, freshly prepared solution **(a)** and after 48 h at 37 °C **(b)**; **1e** in DMEM-d, freshly prepared solution **(c)** and after 24 h at 37 °C **(d)**; **1a** in D₂O **(e)**.

[Ru(κN -NCS)($\kappa^2 N$, *O*-Hyp)(η^6 -*p*-cymene)], 2d, in D₂O and DMEM-d.

Figure S75. ¹H NMR spectra (3-6 ppm region) of: **2d** in D₂O/CD₃OD 5:2 v/v, freshly prepared solution **(a)** and after 48 h at 37 °C **(b)**; **2d** in DMEM-d/CD₃OD 5:2 v/v, freshly prepared solution **(c)** and after 24 h at 37 °C **(d)**; **2a** in D₂O **(e)**.

[Ru($\kappa^3 N, O, O'$ -Ser)(η^6 -*p*-cymene)], 3h, in D₂O and DMEM-d.

3h. ¹H NMR (D₂O): δ/ppm = 5.62, 5.59 (d, *J* = 6.2 Hz, 2H); 5.36 (d, *J* = 6.1 Hz, 2H); 3.31 (d, *J* = 2.4 Hz, 1H), 3.19 (d, *J* = 9.9, 2.6 Hz, 1H), 3.04 (d, *J* = 9.8 Hz, 1H), 2.79 (hept, *J* = 6.9 Hz, 1H), 2.22 (s, 3H); 1.28 (d, *J* = 6.9 Hz, 6H).

Figure S77. ¹H NMR spectra (3-6 ppm region) of: **3h** in D₂O, freshly prepared solution **(a)** and after 48 h at 37 °C **(b)**; **3h** in DMEM-d, freshly prepared solution **(c)** and after 24 h at 37 °C **(d)**; **3a** in D₂O **(e)**.

[Ru($\kappa^3 N, O, O'$ -Thr)(η^6 -*p*-cymene)], 4h, in D₂O and DMEM-d.

4h. ¹H NMR (D₂O): δ/ppm = 5.61, 5.51 (d, *J* = 5.9 Hz, 2H); 5.45, 5.35 (d, *J* = 5.9 Hz, 2H); 3.32 (q, *J* = 6.4 Hz, 1H), 3.08 (s, 1H), 2.80 (hept, *J* = 6.9 Hz, 1H), 2.22 (s, 3H); 1.29, 1.28 (d, *J* = 6.9 Hz, 6H); 0.97 (d, *J* = 6.4 Hz, 3H).

Figure S78. ¹H NMR spectra (3-6 ppm region) of: **4h** in D₂O, freshly prepared solution **(a)** and after 48 h at 37 °C **(b)**; **4h** in DMEM-d, freshly prepared solution **(c)** and after 24 h at 37 °C **(d)**; **4a** in D₂O **(e)**.

[Ru($\kappa^2 N$, *O*-Ser)(κP -pta)(η^6 -*p*-cymene)]Cl, [3i]Cl in D₂O and DMEM-d.

[**3i**]⁺. ¹H NMR (D₂O): δ /ppm = 6.17–6.06 (m, 3H), 5.89 (t, *J* = 5.6 Hz, 1H); 4.62, 4.60 (s, 6H); 4.37–4.24 (m, 6H), 4.06–3.95 (m, 1H); 3.93, 3.31 (t, *J* = 3.7 Hz, 1H), 3.88 (dd, *J* = 12.0, 3.4 Hz), 3.76–3.71 (m) (1H); 2.59 (hept, *J* = 7.1 Hz, 1H); 2.05, 2.03 (s, 2H); 1.18 (t, *J* = 6.2 Hz, 6H). ³¹P{¹H} NMR (D₂O): δ /ppm = -36.4, -36.7. Isomer ratio = 1.3.

Figure S79. ¹H NMR spectra (3-6 ppm region) of: **[3i]**⁺ in D₂O, freshly prepared solution **(a)** and after 48 h at 37 °C **(b)**; **[3i]**⁺ in DMEM-d, freshly prepared solution **(c)** and after 24 h at 37 °C **(d)**; **3a** in D₂O **(e)**.

UV-Vis spectra of 4d for Log Pow measurement

Figure S80. UV-Vis spectra of $[Ru(\kappa N-NCS)(\kappa^2 N, O-Hyp)(\eta^6-p-cymene)]$, **2d** for Log P_{ow} measurement: initial spectrum in the aqueous stock solution (blue line), spectra after partition in the aqueous phase (light blue / cyan lines) and in the octanol phase (yellow / orange lines); x3 replicates.

Mass spectra following incubation with Cyt c

Figure S81. Deconvoluted ESI mass spectrum of Cyt c in 2 mM ammonium acetate solution, pH 6.8, incubated with compound **1a** for 72 h at 37 °C. The final protein concentration was 10⁻⁷ M with a complex to protein molar ratio of 3:1. 0.1% v/v of formic acid was added just before infusion.

Figure S82. Deconvoluted ESI mass spectrum of Cyt c in 2 mM ammonium acetate solution, pH 6.8, incubated with compound **1d** for 24 h at 37 °C. The final protein concentration was 10⁻⁷ M with a complex to protein molar ratio of 3:1. 0.1% v/v of formic acid was added just before infusion.

Figure S83. Deconvoluted ESI mass spectrum of Cyt c in 2 mM ammonium acetate solution, pH 6.8, incubated with compound **1d** for 72 h at 37 °C. The final protein concentration was 10⁻⁷ M with a complex to protein molar ratio of 3:1. 0.1% v/v of formic acid was added just before infusion.

Figure S84. Deconvoluted ESI mass spectrum of Cyt c in 2 mM ammonium acetate solution, pH 6.8, incubated with compound **4h** for 24 h at 37 °C. The final protein concentration was 10⁻⁷ M with a complex to protein molar ratio of 3:1. 0.1% v/v of formic acid was added just before infusion.

Figure S85. Deconvoluted ESI mass spectrum of Cyt c in 2 mM ammonium acetate solution, pH 6.8, incubated with compound **4h** for 72 h at 37 °C. The final protein concentration was 10⁻⁷ M with a complex to protein molar ratio of 3:1. 0.1% v/v of formic acid was added just before infusion.

Figure S86. Deconvoluted ESI mass spectrum of Cyt c in 2 mM ammonium acetate solution, pH 6.8, incubated with compound [**3i**]Cl for 24 h at 37 °C. The final protein concentration was 10⁻⁷ M with a complex to protein molar ratio of 3:1. 0.1% v/v of formic acid was added just before infusion.

Figure S87. Deconvoluted ESI mass spectrum of Cyt c in 2 mM ammonium acetate solution, pH 6.8, incubated with compound [**3i**]Cl for 72 h at 37 °C. The final protein concentration was 10⁻⁷ M with a complex to protein molar ratio of 3:1. 0.1% v/v of formic acid was added just before infusion.

References.

- L. Biancalana, I. Abdalghani, F. Chiellini, S. Zacchini, G. Pampaloni, M. Crucianelli and F. Marchetti, *Eur. J. Inorg. Chem.* 2018, 3041–3057.
- (a) NaN₃: R. T. M. Fraser, *Anal. Chem.* 1959, **31**, 1602–1603; (b) KCN: G. E. Leroi and W. Klemperer, *J. Chem. Phys.* 1961, **35**, 774 and SDBSWeb: https://sdbs.db.aist.go.jp (National Institute of Advanced Industrial Science and Technology, 05/2021); (c) [Ru(N₃)₂(η⁶-C₆Me₆)]₂: P. Govindaswamy, H. P. Yennawar and M. Rao Kollipara, *J. Organomet. Chem.* 2004, **689**, 3108–3112.
- 3 J. Feeney and A. S. V. Burgen, *Eur. J. Biochem.* 1973, **34**, 107-111.