Supplementary Information for

Preparation of LDO@TiO2 core-shell nanosheets for enhanced

photocatalytic degradation of organic pollutions

Can Wang^a, Ruikang Zhang^{a,*}, Yucong Miao^b, Qihui Xue^a, Borong Yu^a, Yuanzhe Gao^a, Zhan-gang

Han^a, Mingfei Shao^b

^aHebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials

Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China.

^bState Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical

Technology, Beijing 100029, China

E-mail: zhangruikang@hebtu.edu.cn

Supplementary Figures

Fig. S1 SEM image of ZnAl-LDO.

Fig. S2 XRD patterns of ZnAl-LDO-T samples.

Fig. S3 The infrared spectroscopy of LDH@TiO2 and LDO@TiO2.

Fig. S4 HRTEM image of a sliced LDH@TiO $_2$ core-shell nanosheet.

Fig. S5 SEM image of LDH@TiO₂-H.

Fig. S6 (a) UV-vis spectra and (b) the corresponding standard concentration line of MB solutions.

Fig. S7 (a) UV-vis spectra and (b) the corresponding standard concentration line of AO solutions.

Fig. S8 XRD patterns of ZnAl-LDO-R and LDO@TiO2-R samples.

Fig. S9 (a) Absorption percentage and (b) photodegradation efficiency of MB and AO for LDO@TiO₂ at various

pH values.

Fig. S10 The full-scale XPS pattern of ZnAl-LDO and LDO@TiO2.

Fig. S11 The photocurrents of ZnAl-LDO and LDO@TiO2 samples under chopped illumination.

Fig. S12 (a) UV-vis diffuse-reflectance spectra and (b) band gap energy of ZnAl-LDO and LDO@TiO2.

Photocatalysts	Light	Dosage	MB	AO	Degradation	Ref
g-C ₃ N ₄ /TiO ₂	UV lamp	25mg	10mg/L (100mL)		79.9% (180min)	[1]
g-C ₃ N ₄ /ZnO	250W UV lamp λmax= 365 nm	25mg	10mg/L (50mL)		100% (60min)	[2]
g-C ₃ N ₄ /TiO ₂	30W visible light lamp	200mg		10mg/L (500mL)	100% (300min)	[3]
TiO ₂ sphere-S	Xenon lamp 100mWcm ⁻²	20mg		30mg/L (50mL)	100% (40min)	[4]
CFs/TiO ₂ / Bi ₂ WO ₆	300W Xenon lamp	150mg		10mg/L (50mL)	100% (60min)	[5]
P25	150W halogen lamp	20mg	10mg/L (100mL)		60.2% (120min)	[6]
P25	UV lamp	150mg	10mg/L (300mL)		81.4% (100min)	[7]
P25	eight tubular light sources (3.2 mW cm ⁻² 360 to 380 nm)	25mg		5mg/L (100mL)	100% (30min)	[8]
P25	two fluorescent lamps Sylvania 11W	200mg		35mg/L (100mL)	25% (120min)	[9]
		50mg	10mg/L (100mL)	_	87.1% (120min) 100%	This
LDO@TiO2	Xenon lamp	50mg		25mg/L (100mL)	100% (120min)	work

Tab. S1 The photodegradation performance in reported works

References

[1] P. Gao, A. Li, D. Sun and W. Ng, J. Hazard. Mater., 2014, 279, 96–104.

[2] B. Ren, T. Wang, G. Qu, F. Deng, D. Liang, W. Yang and M. Liu, Environ. Sci. Pollut. Res., 2018, 25, 19122-

19133.

[3] P. Gündoğmus, J. Park and A. Öztürk, Ceram. Int., 2020, 46, 21431–21438.

[4] Y. Zhang, Y. Sun, M. Li, S. Luo, B. Dorus, M. Lu and Q. Sun., J. Alloys Compounds, 2021, 890, 161744.

- [5] J. Miao, X. Zhao, Y.-X. Zhang, Z.-L. Lei and Z.-H. Liu, Appl. Clay Sci., 2021, 207, 106093.
- [6] J. Romao and G. Mul. ACS Catal., 2016, 6, 1254–1262.
- [7] P. Xu, Xi. Shen, L. Luo, Z. Shi, Z. Liu, Z. Chen, M. Zhu and L. Zhang, Environ. Sci.: Nano, 2018, 5, 327–337.
- [8] F. Bekena and D. Kuo, Mat. Sci. Semicon. Proc., 2020, 116 105152.
- [9] S. M. Tichapondwa, J. P. Newman and O. Kubheka, Phys. Chem. Earth., 2020, 118, 102900.