Supporting Information

Efficiently increasing low-field magnetic entropy by incorporating

SO3²⁻ into Gd₂₂Ni₂₁ cluster

Ning-Fang Li, Ye-Min Han, Jia-Nian Li, Qiaoling Chen and Yan Xu*,^{†,§}

[†] College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China.
§ State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
E-mail: yanxu@njtech.edu.cn

Content

Section 1. Experimental Section	
Section 2. Synthesis and Discussion	5
Synthesis of compound Gd ₂₂ Ni ₂₁	5
Synthetic discussion	5
Section 3. Crystal Structures	9
Crystal structure figures	9
Section 4. Characterizations	14
PXRD	14
FT-IR	
TGA	
BVS	
EDS	
ICP	
Section 5. Magnetic Studies	
Section 6. Tables	23
References	

Section 1. Experimental Section

Materials and Physical measurements

All materials, reagents and solvents were of commercial origin and were used as received. Elemental analyses (C, H, N, S) were performed on a Perkin-Elmer 2400 elemental analyzer. Powder X-ray diffraction (PXRD) was recorded on a Bruker D8X diffractometer equipped with monochromatized Cu-K_{α} ($\lambda = 1.5418$ Å) radiation at room temperature. Data were collected in the range of 3-50°. Infrared spectra (FT-IR) of compounds were recorded with a Nicolet Impact 410 FTIR spectrometer with pressed KBr pellets, from 4000 to 400 cm⁻¹. Thermogravimetric analysis (TGA) measurement was carried out with a NETZSCH STA409 thermogravimetric analyzer in a flowing nitrogen atmosphere from 25 to 1000 °C with a heating rate of 10 K·min⁻ ¹. Energy dispersive spectrometer (EDS) were determined by using a Hitachi S-4800 scanning electron microscope at an accelerating voltage of 20 kV. The direct current magnetic data were measured at temperature between 1.8 and 300 K, and the magnetization isothermal measurements were made in fields of between 0 and 7 T on MPMS-XL7 SQUID magnetometer. Experimental susceptibilities were corrected for the diamagnetism estimated Pascal's tables and for sample holder by previous calibration. Gas chromatographic (GC) analysis was conducted by gas chromatography (FULI-9790II) with Thermal Conductivity Detector (TCD) and a Parapak-Q column (2 m \times 3 mm). Experimental conditions were as follows: N₂ (99.99%) as Carrier gas; column temperature: 60 °C; injector temperature: 80 °C; Detector temperature: 90 °C; carbon dioxide (99.9 %) and air as quantitive analysis standard.

X-ray Crystallographic Study

The single crystal X-ray diffraction of the compound was tested through a Bruker Apex II CCD by using ω -2 θ scan method with Mo-K_a radiation (λ =0.71073

Å). The crystalline structures were settled by direct method and refined by the fullmatrix least-squares methods on F^2 using the SHELX-2018/3 program package for compound **Gd**₂₂**Ni**₂₁. The free refinement gives the occupancy factor of Gd5 is 0.3739, which fixed 1/3 in the final refinement. While SO₄²⁻ and SO₃²⁻ groups are also disordered, the occupancy factors are 0.5 (for S1A and S2) and 0.25 (for S1B). The crystallographic data are presented in CIF files.

Compound	Gd22Ni21
Empirical formula	$C_{108}H_{202.75}Cl_{9.75}Gd_{22}N_{21}Ni_{21}O_{198.5}S_{3.75}$
Formula weight	10129.92
Temperature (K)	296(2)
Wavelength (Å)	0.71073
Crystal system	Hexagonal
Space group	P-6(2)/c
<i>a</i> (Å)	21.5001(12)
<i>b</i> (Å)	21.5001(12)
<i>c</i> (Å)	34.195(3)
α (°)	90
β (°)	90
γ (°)	120
Volume (Å ³)	13689.1(19)
Ζ	2
Calculated density (Mg / m ³)	2.458
Absorption coefficient (mm ⁻¹)	6.887
<i>F</i> (000)	9615
Crystal size (mm ³)	$0.130 \times 0.120 \times 0.120$
Limiting indices	-25<=h<=25, -25<=k<=25, -40<=l<=40
Reflections collected	97131
Independent reflection	8208 [R(int) = 0.0829]
Theta range for data collection (°)	1.245 to 25.022
Data / restraints / parameters	8208 / 289 / 668
Goodness-of-fit on F^2	1.038
Final <i>R</i> indices $[I > 2$ sigma (I)] ^{ab}	$R_1 = 0.0309, wR_2 = 0.0772$
R indices (all data)	$R_1 = 0.0372, wR_2 = 0.0805$
CCDC	2018460

Table S1 The Crystallographic data of compound Gd₂₂Ni₂₁.

^a $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|, {}^{b}wR_2 = \Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2]^{1/2}$

Section 2. Synthesis and Discussion

Synthesis of compound Gd₂₂Ni₂₁

Gd(NO₃)₃·6H₂O (0.18 g, 0.40 mmol), Ni(CH₃COO)₂·4H₂O (0.12 g, 0.50 mmol), iminodiacetic acid (H₂IDA; 0.06 g, 0.5 mmol), and imidazole (0.07 g, 1.00 mmol), were dissolved in the mixed solvent of CH₃CH₂OH/H₂O (v/v = 10 mL : 4 mL). This solution was stirred for 2 h under the room temperature, then Na₂SO₃ (0.01 g, 0.09 mmol) was added to the mixture and continued to be stirred another 10 minutes. Whereafter, the pH value of the solution was adjusted to about 3.0 (HCl, 1 M). Finally, this mixture was sealed in a 25 mL Teflon-lined autoclave and heated at 180 °C for 8 days before cooled down to the room temperature. Grass green diamond crystal **Gd₂₂Ni₂₁** was collected and dried in air (yield: 21.00 % basis on Gd). Elemental analysis: calculated (%): C, 12.80; H, 2.00; N, 2.90; S, 1.20; found (%): C, 12.75; H, 1.97; N, 2.90; S, 1.38.

Fig. S1 The crystal morphology of Gd₂₂Ni₂₁.

Synthetic discussion

We had a desperate moment to synthesize new sulfite-doped 3d-4f highnuclearity clusters. Various experimental attempts were conducted in the original period, but unfortunately, they all failed. Some synthetic factors must be fully considered during the synthesis, which are of great importance for the formation of compound Gd₂₂Ni₂₁. Although imidazole was used as one of the initial reactants, we noticed that no imidazole was found in the final structures. However, we cannot obtain the target product without the addition of imidazole. In addition, imidazole plays an important role in stabilizing the structure of the cluster. Other bases (such as NaOH, triethylamine, 2-nitroimidazole, 1-benzylimidazole, 1,2,4triazole, etc.) cannot complete the construction of this huge molecule. The pH value for the crystal growth is in the range of 2.5-3.5, however, the optimal value is 3.0. No crystalline products were obtained when the pH value was adjusted to lower than 2.5 or higher than 3.5. Gd₂₂Ni₂₁ can be synthesized under the temperature 180 °C. In addition to the given synthesis temperature, no products were found at other temperatures. In this work, the Cl⁻ ions acted as the counter anions and come from the pH-adjusting (HCl). When HCl was changed into HNO₃ or HBr, there were on objectives. No products were obtained by directly adding NH₂CH₂COOH or HOCH₂COOH, which implied that slowly releasing or production small species (HOCH₂COO⁻) played pivotal influence on the successfully assembly of these aggregations.

Among the methods for slowly introduction of CO_3^{2-} , atmospheric CO_2 fixation and the decomposition of some organic ligands have been widely accepted.¹ In this work, slowly rntroduction of CO_3^{2-} plays the the crucial influence on the successfully assembly of this aggregation, because no objective products were obtained by adding carbonate (Na₂CO₃, K₂CO₃, NaHCO₃, or KHCO₃). Meanwhile, CO_3^{2-} ions exist in **Gd**₂₂**Ni**₂₁ with the following reasons: (i) FT-IR shows that the peak at 1445 cm⁻¹ is attributed to C=O stretching and bending vibrations, indicating the presence of CO_3^{2-} ; (ii) In order to further confirm the presence of CO_3^{2-} groups, compound **Gd**₂₂**Ni**₂₁ (30 mg) was put in a 2 mL glass vial containing 1.2 mL H₂O. The mixture was stirred for 10 min under room temperature. And then 0.2 mL gas from this glass is collected with a sealing needle and injected into a gas chromatograph for analysis (Fig. S4a, S5). Later, a few bubbles appeared after injecting concentrated H₂SO₄ (80 µL, 18.4 mol/L). This can be ascribed to the destruction of the structure of compound **Gd**₂₂**Ni**₂₁ and

releases CO₂ (Fig. S4b). The gas (0.2 mL) is collected with a sealing needle and injected into a gas chromatograph for analysis (Fig. S4b, S5). The experimental results of gas chromatography measurements show that the carbon dioxide in the air is negligible, and CO₂ molecules are released from compound $Gd_{22}Ni_{21}$. These experimental data suggest that CO_3^{2-} ions are in compound $Gd_{22}Ni_{21}$.

Fig. S2 The situ hydrolysis of H₂IDA.

Fig. S3 The decomposition scheme of CO₂ from compound $Gd_{22}Ni_{21}$ in the presence of concentrated H₂SO₄ (98 %; 80 μ L).

Fig. S4 (a) The samples of compound $Gd_{22}Ni_{21}$ immersed in water; (b) The samples of compound $Gd_{22}Ni_{21}$ immersed in water with concentrated H₂SO₄ (80 µL).

Fig. S5 Gas chromatography analyses of generated gases from the reaction of H₂O and solid samples of $Gd_{22}Ni_{21}$ (red); concentrated H₂SO₄, H₂O and solid samples of $Gd_{22}Ni_{21}$ (black). Inset: the enlarged drawing for 0.4 - 0.6 min.

Section 3. Crystal Structures

Crystal structure figures

Fig. S6 The ball and stick view of cluster $Gd_{22}Ni_{21}$. For clarity, free water molecules, H atoms and Cl⁻ ions were omitted.

Fig. S7 The inner Ln-shell Gd_{22} (a), (c); the ball and stick view of external Ni_{21} shell (b), (d); the metal framework of $Gd_{22}Ni_{21}$ (e).

Fig. S8 Ball-and stick view of metal frame $Gd_{13}Ni_9$ (a); the simplified view of $Gd_{13}Ni_9$ (b); Gd_{13} (c); Gd_4 (d); Ni_9 (IDA)₉ (e); Ni_2 (IDA)₂ (f); Ni_3 (IDA)₃ (g).

In order to clearly discuss the metal frame, propeller-like $Gd_{13}Ni_9$ can be disassembled into two components (Fig. S8): (i) $[Gd_{13}(CO_3)_3(HOCH_2COO)_3]^{30+}$ (Gd₁₃) Ln-shell comprised by three $[Gd_4(CO_3)(HOCH_2COO)]^{9+}$ (Gd₄) and one center Gd2 atom (Fig. S8c-d) via three CO_3^{2-} ions; (ii) Ni-shell, Ni₉(IDA)₉ constituted by three Ni₂(IDA)₂ groups and inner Ni₃(IDA)₃ via organic ligands IDA²⁻ (Fig. S8e-g). Then, Gd₁₃ shell and Ni₉ shell are linked to form propeller-shaped Gd₁₃Ni₉ (Fig. S8a, b) unit via IDA²⁻ ligands again.

Fig. S9 The view of cluster $Gd_{22}Ni_{21}$ templated by SO_4^{2-} and SO_3^{2-} anions. S, yellow; O, red.

Fig. S10 The polyhedron view of cluster $Gd_{22}Ni_{21}$ templated by SO_4^{2-} and SO_3^{2-} anions.

Fig. S11 Ball-and-stick of coordination environment of Gd1 (a), Gd2 (b), Gd3 (c), Gd4 (d), Gd5 (e), Ni1 (f), Ni2 (g), Ni3 (h), Ni4 (i).

The coordination mode of all metal ions (Gd³⁺ and Ni²⁺) in cluster Gd₂₂Ni₂₁ are exhibited in Fig. S11. Gd1 is attached alongside nine O atoms (three oxygen atoms from carbonate ions, two O from μ_3 -OH⁻, one oxygen from SO₃²⁻, and three oxygen from IDA²⁻ ligands). Gd2 is linked by nine O-donors (three bridging oxygen from μ_3 -OH⁻, three oxygen atoms from CO₃²⁻, as well as three oxygen from IDA²⁻ ligands). Gd3 is coordinated by nine O-donors (two oxygen atoms from IDA²⁻ ligands, two oxygen atoms from one HOCH₂COO⁻ ligand, two oxygen from oxalate, one oxygen from CO₃²⁻, one oxygen from SO₃²⁻, and one O from μ_3 -OH⁻. Gd4 is connected with nine O atoms (one oxygen from SO₄²⁻, two oxygen atoms from HOCH₂COO⁻, one bridging oxygen from μ_3 -OH⁻, two oxygen from oxalate, one oxygen atom from CO₃²⁻, and the rest oxygen together from two IDA²⁻ ligands. While **Gd5** is seven-coordinated, connected to two oxygen from SO₄²⁻, one O form HOCH₂COO⁻, one oxygen atom from IDA²⁻ ligand, one oxygen atom from coordination H₂O, and the rest oxygen from μ_3 -OH⁻ molecules. Beyond that, Ni²⁺ ions (Fig. S11e-f) are all six-coordinated with two different coordination modes. **Ni1**, **Ni2** and **Ni3** are connected to one N and five O donors (four oxygen atoms and one nitrogen atom from three IDA²⁻ ligands, and one O atom from one μ_3 -OH⁻). While **Ni4** is connected to one O-donor from μ_3 -OH⁻, one oxygen from water molecule, and the rest oxygen and one nitrogen atom from one IDA²⁻ ligand.

Fig. S12 The coordination modes of IDA²⁻ (a), (b); HOCH₂COO⁻ (c); CO₃²⁻ (d); $C_{2}O_{4}^{2-}$ (e); SO₄²⁻ (f); SO₃²⁻ (g).

Fig. S13 Wires or Sticks views of $\{Ni_{21}Ln_{20}\}^3$ cages [Ln = Pr (a) and Nd (b)]; $\{Gd_{20}Ni_{21}\}^2$ cage (c); $Gd_{22}Ni_{21} (d)$.

Section 4. Characterizations

PXRD

Fig. S14 The experimental and simulated PXRD patterns for compound Gd₂₂Ni₂₁.

For compound $Gd_{22}Ni_{21}$, the PXRD measurement was determined at room temperature. The experimental powder X-ray diffraction pattern of compound $Gd_{22}Ni_{21}$ is consistent with the simulated pattern, showing the good purities of the sample phase.

FT-IR

Fig. S15 The FT-IR of compound Gd₂₂Ni₂₁.

The strong peak at 3437 cm⁻¹ can be ascribed to stretching vibration of O-H from water. Meanwhile, the characteristic peak at 3234 cm⁻¹ is the stretching vibration of N-H. Moreover, the asymmetric stretching vibration peak on the carboxyl group corresponds to 1603 cm⁻¹ and the symmetrical one appears at 1372 cm⁻¹. The peak at 1445 cm⁻¹ is attributed to C=O stretching and bending vibrations, indicating the presence of CO_3^{2-} spices. The characteristic adsorption bands of SO_3^{2-} appear about at 610 cm⁻¹, whereas the bands in the regions of 1110-994 cm⁻¹ can be attributed to SO_4^{2-} . In addition, the stretching vibration peak of the Ln-O bond appears at 726 cm⁻¹ for compound **Gd**₂₂**Ni**₂₁. The occurrence of these characteristic adsorption bands is

TGA

Fig. S16 TGA curve of compound Gd₂₂Ni₂₁.

TGA was performed (T = 25 - 1000 °C) in a N₂ atmosphere at a heating rate of 10 °C min⁻¹ for compound $Gd_{22}Ni_{21}$. As shown in Fig. S16, the TGA diagram of $Gd_{22}Ni_{21}$ displayed two weight loss phases. The first mass loss of 4.56 % in the temperature range of 25-290 °C can be ascribed to the loss of 12 coordination water and 15.5 free water molecules (the calculated value is 4.80 %). From 290 - 1000 °C, the weight loss corresponds to the decomposition of ligands and the collapse of the skeleton.

BVS

		L	ν	₽(BVS)
	Gd1	2.339	2.58	
O1A	Gd2	2.392	0.44	1.11
	Ni1	2.057	0.32	

Table S2 Bond valence calculation (BVS) of compound Gd₂₂Ni₂₁.

	Gd1	2.385	1.34	
O2A	Gd3	2.419	0.88	0.86
	Ni3	2.034	0.35	
	Gd3	2.384	1.46	
O3A	Gd3	2.384	1.46	1.08
	Ni2	2.049	0.33	
	Gd3	2.395	1.24	
O4A	Gd4	2.402	0.56	0.73
	Ni4	2.038	0.38	
OH1	Gd3	2.579	0.41	0.82
	Gd3	2.579	0.41	0.02
OH2	Gd4	2.508	0.33	0.67
0112	Gd5	2.584	0.30	0.07

The relation between L and ν is given by two curve segments:

For
$$L \leq \overline{L}$$
, $v = v_i \left(\frac{\overline{L}}{L}\right)^p$ (1)

For
$$\overline{L} \le L \le L_{MAX}$$
, $v = v_i \frac{L_{MAX} - L}{L_{MAX} - \overline{L}}$ (2)

$$p=\frac{L}{L_{MAX}-\bar{L}}$$
 (3)

where V_i is the ideal bond valence, defined as the quotient of the cationic charge by the coordination number (CN), and L_{MAX} is the upper limit of an atomic approach that will still be counted as an interatomic bond, so that CN is the number of anions at distances smaller than L_{MAX} from the cation. The average bond length, \bar{L} , is the mean value determined for each coordination polyhedron in the structure at hand, so that its use enables us to adapt the curve to the bonding actually encountered. Should \bar{L} differ appreciably for two or more chemically identical but crystallographically different cations, a distinct curve is constructed and used for each one to obtain its bond valences.²³ EDS

Fig. S17 The EDS measurement of compound Gd₂₂Ni₂₁.

Table	S3	The	Cl,	Ni,	S	and	Gd	components	of	Gd ₂₂ Ni ₂₁	recorded	from	the	EDS
quanti	tativ	ve ana	alyse	es.										

Element	Pe	rcentage by atomic /	/ %
	1	2	average
Cl	3.76	3.89	3.82
Ni	3.50	3.68	3.59
S	1.06	1.15	1.11
Gd	1.60	1.65	1.62

ICP

Table S4 The ICP date of compound Gd₂₂Ni₂₁.

		- 21	
Content	Gd (mmol / L)	Ni (mmol / L)	Gd / Ni (mol %)
$Gd_{22}Ni_{21}$	0.01484	0.01456	1.0192

Section 5. Magnetic Studies

Fig. S18 Magnetic susceptibility versus temperature from 1.8 to 300 K under 1.0 kOe dc field for **Gd₂₂Ni₂₁**. Inset: magnetic susceptibility versus temperature from 150 to 300 K under 1.0 kOe dc field for **Gd₂₂Ni₂₁**.

Fig. S19 χ M⁻¹ versus *T* plot of **Gd**₂₂**Ni**₂₁. The red line is fitting result with χ M⁻¹= *C* / (*T*- θ).

Fig. S20 The plots of field-dependent magnetization for Gd₂₂Ni₂₁ (1.8-10 K).

Fig. S21 Values of $-\Delta S_m$ calculated from the magnetization data for Gd₂₂Ni₂₁.

Fig. S22 Isothermal field sweep measurement performed on polycrystalline sample of **Gd**₂₂**Ni**₂₁ at 1.8 K and 0 Oe.

Complexes	$-\Delta S_{\rm m}$	Т	ΔH	Ref.
	$(J \cdot kg^{-1} \cdot K^{-1})$	(K)	(T)	
$\{Co_{12}Gd_{30}\}$	44.70	2.0	7.0	9a
${Ni_{64}Gd_{96}}$	42.80	3.0	7	9b
$\{Ni_{21}Gd_{22}\}$	41.90	2.0	7	This work
${Ni_{36}Gd_{102}}$	41.30	2.0	7	10
$\{Co^{II}_9Co^{III}Gd_{42}\}$	41.26	2.0	7	11
{Ni64Gd78Si6}	40.63	3.0	7	12
{Ni56Gd52}	40.10	2.0	7	13
${Ni_{10}Gd_{42}}$	38.20	2.0	7	11
$\{Co^{II}Co^{III}_6Gd_{18}\}$	36.90	2.0	7	24
$\{Ni_{12}Gd_{36}\}$	36.30	3.0	7	14
${Ni_{44}Gd_{40}}$	36.05	3.0	7	15
$\{Gd_{12}Mo_4\}$	35.30	3.0	7	16
${Ni_{21}Gd_{20}}$	34.80	3.0	7	2
${Ni_2Gd_2}$	34.40	4.5	7	17
$\{Mn_4Gd_6\}$	33.70	3.0	7	18
$\{Co_4Gd_{10}\}$	32.60	2.0	7	20
{Ni6Gd6}	32.00	3.0	7	21
{Cu5Gd4}	31.00	3.0	9	22

Table S5 - ΔS_m (> 30 J·kg⁻¹·K⁻¹) for reported Gd-based polymetallic clusters.

Section 6. Tables

Ions in Gu ₂₂						
Refcode ^a	Ni1	Ni2	Ni3	Ni4		
HP-6	33.414	33.403	31.989	32.393		
PPY-6	24.262	23.847	25.285	21.465		
OC-6	1.067	0.968	0.825	1.494		
TPR-6	11.303	12.973	12.426	10.327		
JPPY-6	28.256	27.587	28.98	25.235		

Table S6 The CShM (Continuous Shape Measures) values of six-coordinated Ni ions in $Gd_{22}Ni_{21}$.

^aHP-6, hexagon; PPY-6, pentagonal pyramid; OC-6, octahedron; TPR-6, trigonal prism, JPPY-6, johnson pentagonal pyramid J2.

Table S7 The CShM (Continuous Shape Measures) values of seven-coordinated Gd ions in Gd₂₂Ni₂₁.

Refcode ^a	Gd5
HP-7	28.115
HPY-7	14.341
PBPY-7	8.199
COC-7	8.834
CTPR-7	7.140
JPBPY-7	9.319
JETPY-7	18.030

^a HP-7, Heptagon; HPY-7, Hexagonal pyramid; PBPY-7, Pentagonal bipyramid; COC-7, Capped octahedron; CTPR-7, Capped trigonal prism; JPBPY-7, Johnson pentagonal bipyramid J13; JETPY-7, Johnson elongated triangular pyramid J7.

Refcode ^a	Gd1	Gd2	Gd3	Gd4
EP-9	35.400	37.598	38.066	36.882
OPY-9	19.896	21.012	21.685	22.535
HBPY-9	19.191	21.328	21.24	18.801
JTC-9	14.848	16.98	15.721	15.994
JCCU-9	11.158	11.911	11.687	10.314
CCU-9	9.365	10.355	9.879	9.296
JCSAPR-9	2.975	2.547	2.508	1.612
CSAPR-9	1.887	1.267	1.047	0.767
JTCTPR-9	3.707	2.971	2.937	2.467
TCTPR-9	1.375	0.118	0.454	0.960
JTDIC-9	11.188	10.381	11.634	12.838
HH-9	11.902	13.888	12.092	12.097
MFF-9	2.204	1.992	1.625	0.725

Table S8 The CShM (Continuous Shape Measures) values of nine-coordinated Gd ions in Gd₂₂Ni₂₁.

^aEP-9, enneagon; OPY-9, octagonal pyramid; HBPY-9, heptagonal bipyramid; JTC-9, Johnson triangular cupola J3; JCCU-9, capped cube J8; CCU-9, spherical-relaxed capped cube; JCSAPR-9, capped square antiprism J10; CSAPR-9, spherical capped square antiprism; JTCTPR-9, tricapped trigonal prism J51; TCTPR-9, spherical tricapped trigonal prism; JTDIC-9, tridiminished icosahedron J63; HH-9, hula-hoop; MFF-9, muffin.

Gd(1)-O(1A)	2.339(8)	Gd(3)-O(2B)#4	2.569(10)	Ni(2)-O(2)	2.036(10)
Gd(1)-O(2A)	2.385(8)	Gd(3)-O(1S)	2.577(11)	Ni(2)-O(2)#3	2.036(10)
Gd(1)-O(2S)	2.400(9)	Gd(4)-O(1B)	2.310(10)	Ni(2)-O(14)#3	2.048(9)
Gd(1)-O(1B)	2.469(9)	Gd(4)-N(5)	2.351(12)	Ni(2)-O(14)	2.048(9)
Gd(1)-O(15)	2.471(9)	Gd(4)-O(4A)#2	2.405(9)	Ni(2)-O(3A)	2.049(14)
Gd(1)-O(3B)	2.497(9)	Gd(4)-O(18)#2	2.409(19)	Ni(2)-N(4)	2.073(16)
Gd(1)-O(9)	2.504(8)	Gd(4)-O(6)#2	2.419(10)	Ni(3)-O(13)#3	1.999(9)
Gd(1)-O(2B)#1	2.609(9)	Gd(4)-O(4)#2	2.421(12)	Ni(3)-O(2A)	2.034(8)
Gd(1)-O(5)#2	2.697(9)	Gd(4)-O(17)#5	2.488(10)	Ni(3)-O(16)	2.042(11)
Gd(2)-O(1A)	2.392(9)	Gd(4)-O(7S)	2.507(17)	Ni(3)-O(9)	2.042(9)
Gd(2)-O(1A)#2	2.392(9)	Gd(4)-O(15)	2.510(10)	Ni(3)-O(11)	2.094(9)
Gd(2)-O(1A)#1	2.392(9)	Gd(5)-O(8W)	2.21(6)	Ni(3)-N(3)	2.100(10)
Gd(2)-O(3B)	2.428(8)	Gd(5)-O(6W)	2.23(3)	Ni(4)-O(4A)	2.038(9)
Gd(2)-O(3B)#2	2.428(8)	Gd(5)-O(3)	2.246(19)	Ni(4)-O(1)	2.042(9)
Gd(2)-O(3B)#1	2.428(8)	Gd(5)-O(7W)#6	2.27(6)	Ni(4)-O(4)	2.081(12)
Gd(2)-O(7)#1	2.467(8)	Gd(5)-N(5)#1	2.473(14)	Ni(4)-O(12)	2.086(11)
Gd(2)-O(7)	2.467(8)	Gd(5)-O(7S)#1	2.53(2)	Ni(4)-N(1)	2.093(12)
Gd(2)-O(7)#2	2.467(9)	Gd(5)-O(6S)#1	2.57(2)	Ni(4)-O(1W)	2.095(10)
Gd(3)-O(3A)	2.384(8)	Gd(5)-O(7W)	2.68(6)	S(1A)-O(3S)	1.44(3)
Gd(3)-O(4A)#3	2.395(8)	Ni(1)-O(10)	2.006(9)	S(1A)-O(2S)#3	1.532(10)
Gd(3)-O(2A)#3	2.419(9)	Ni(1)-O(5)#2	2.031(9)	S(1A)-O(2S)	1.532(10)
Gd(3)-O(11)#3	2.499(8)	Ni(1)-O(7)#2	2.040(9)	S(1A)-O(1S)	1.626(19)
Gd(3)-O(14)	2.500(9)	Ni(1)-O(1A)	2.057(8)	S(1B)-O(4S)	1.49(5)
Gd(3)-O(17)	2.503(10)	Ni(1)-O(8)	2.070(9)	S(1B)-O(2S)#3	1.493(16)
Gd(3)-O(1)#3	2.551(8)	Ni(1)-N(2)#2	2.084(11)	S(1B)-O(2S)	1.493(16)
O(1A)-Gd(1)-O(2A)	119.4(3)	O(2S)-Gd(1)-O(15)	98.0(4)	O(2A)-Gd(1)-O(9)	68.2(3)
O(1A)-Gd(1)-O(2S)	132.6(3)	O(1B)-Gd(1)-O(15)	67.7(3)	O(2S)-Gd(1)-O(9)	140.2(3)
O(2A)-Gd(1)-O(2S)	72.0(3)	O(1A)-Gd(1)-O(3B)	69.9(3)	O(1B)-Gd(1)-O(9)	131.9(3)
O(1A)-Gd(1)-O(1B)	108.5(3)	O(2A)-Gd(1)-O(3B)	146.9(3)	O(15)-Gd(1)-O(9)	75.5(3)
O(2A)-Gd(1)-O(1B)	132.1(3)	O(2S)-Gd(1)-O(3B)	79.3(3)	O(3B)-Gd(1)-O(9)	138.6(3)
O(2S)-Gd(1)-O(1B)	76.4(3)	O(1B)-Gd(1)-O(3B)	52.0(3)	O(1A)-Gd(1)-O(2B)#1	71.7(3)
O(1A)-Gd(1)-O(15)	128.1(3)	O(15)-Gd(1)-O(3B)	118.7(3)	O(2A)-Gd(1)-O(2B)#1	67.5(3)
O(2A)-Gd(1)-O(15)	82.0(3)	O(1A)-Gd(1)-O(9)	71.6(3)	O(2S)-Gd(1)-O(2B)#1	72.3(3)
O(1B)-Gd(1)-O(2B)#1	133.4(3)	O(3B)#1-Gd(2)-O(7)	96.1(3)	O(3A)-Gd(3)-O(1S)	70.2(4)
O(15)-Gd(1)-O(2B)#1	149.6(3)	O(7)#1-Gd(2)-O(7)	72.0(3)	O(4A)#3-Gd(3)-O(1S)	134.9(4)
O(3B)-Gd(1)-O(2B)#1	88.4(3)	O(1A)-Gd(2)-O(7)#2	70.7(3)	O(2A)#3-Gd(3)-O(1S)	73.2(4)

Table S9 Selected bond lengths for compound $Gd_{22}Ni_{21}\,(\text{\AA})$

O(9)-Gd(1)-O(2B)#1	93.4(3)	O(1A)#2-Gd(2)-O(7)#2	67.3(3)	O(11)#3-Gd(3)-O(1S)	140.2(4)
O(1A)-Gd(1)-O(5)#2	63.1(3)	O(1A)#1-Gd(2)-O(7)#2	131.1(3)	O(14)-Gd(3)-O(1S)	94.3(4)
O(2A)-Gd(1)-O(5)#2	133.8(3)	O(3B)-Gd(2)-O(7)#2	96.1(3)	O(17)-Gd(3)-O(1S)	76.5(5)
O(2S)-Gd(1)-O(5)#2	144.5(3)	O(3B)#2-Gd(2)-O(7)#2	137.4(3)	O(1)#3-Gd(3)-O(1S)	139.6(4)
O(1B)-Gd(1)-O(5)#2	68.1(3)	O(3B)#1-Gd(2)-O(7)#2	144.4(3)	O(2B)#4-Gd(3)-O(1S)	77.3(4)
O(15)-Gd(1)-O(5)#2	68.6(3)	O(7)#1-Gd(2)-O(7)#2	72.0(3)	O(1B)-Gd(4)-O(4A)#2	74.8(3)
O(3B)-Gd(1)-O(5)#2	79.3(3)	O(7)-Gd(2)-O(7)#2	72.0(3)	O(1B)-Gd(4)-O(18)#2	75.9(5)
O(9)-Gd(1)-O(5)#2	70.3(3)	O(3A)-Gd(3)-O(4A)#3	118.3(4)	O(4A)#2-Gd(4)-O(18)#2	132.0(4)
O(2B)#1-Gd(1)-O(5)#2	134.7(3)	O(3A)-Gd(3)-O(2A)#3	123.2(4)	O(1B)-Gd(4)-O(6)#2	85.7(3)
O(1A)-Gd(2)-O(1A)#2	119.93(2)	O(4A)#3-Gd(3)-O(2A)#3	118.4(3)	O(4A)#2-Gd(4)-O(6)#2	74.1(3)
O(1A)-Gd(2)-O(1A)#1	119.927(19)	O(3A)-Gd(3)-O(11)#3	128.8(4)	O(18)#2-Gd(4)-O(6)#2	139.6(5)
O(1A)#2-Gd(2)-O(1A)#1	119.927(19)	O(4A)#3-Gd(3)-O(11)#3	72.3(3)	O(1B)-Gd(4)-O(4)#2	142.9(3)
O(1A)-Gd(2)-O(3B)	70.2(3)	O(2A)#3-Gd(3)-O(11)#3	67.4(3)	O(4A)#2-Gd(4)-O(4)#2	68.2(3)
O(1A)#2-Gd(2)-O(3B)	73.8(3)	O(3A)-Gd(3)-O(14)	66.9(4)	O(18)#2-Gd(4)-O(4)#2	132.8(6)
O(1A)#1-Gd(2)-O(3B)	132.7(3)	O(4A)#3-Gd(3)-O(14)	130.5(3)	O(6)#2-Gd(4)-O(4)#2	81.7(4)
O(1A)-Gd(2)-O(3B)#2	132.7(3)	O(2A)#3-Gd(3)-O(14)	74.3(3)	O(1B)-Gd(4)-O(17)#5	71.2(4)
O(1A)#2-Gd(2)-O(3B)#2	70.2(3)	O(11)#3-Gd(3)-O(14)	70.3(3)	O(4A)#2-Gd(4)-O(17)#5	68.4(3)
O(1A)#1-Gd(2)-O(3B)#2	73.8(3)	O(3A)-Gd(3)-O(17)	68.6(4)	O(18)#2-Gd(4)-O(17)#5	66.6(4)
O(3B)-Gd(2)-O(3B)#2	69.6(3)	O(4A)#3-Gd(3)-O(17)	68.2(3)	O(6)#2-Gd(4)-O(17)#5	139.8(3)
O(1A)-Gd(2)-O(3B)#1	73.8(3)	O(2A)#3-Gd(3)-O(17)	139.4(3)	O(4)#2-Gd(4)-O(17)#5	97.1(4)
O(1A)#2-Gd(2)-O(3B)#1	132.7(3)	O(11)#3-Gd(3)-O(17)	140.1(3)	O(1B)-Gd(4)-O(7S)	129.9(5)
O(1A)#1-Gd(2)-O(3B)#1	70.2(3)	O(14)-Gd(3)-O(17)	134.9(3)	O(4A)#2-Gd(4)-O(7S)	111.9(6)
O(3B)-Gd(2)-O(3B)#1	69.6(3)	O(3A)-Gd(3)-O(1)#3	69.6(4)	O(18)#2-Gd(4)-O(7S)	63.3(7)
O(3B)#2-Gd(2)-O(3B)#1	69.6(3)	O(4A)#3-Gd(3)-O(1)#3	65.0(3)	O(6)#2-Gd(4)-O(7S)	144.4(5)
O(1A)-Gd(2)-O(7)#1	131.1(3)	O(2A)#3-Gd(3)-O(1)#3	135.0(3)	O(4)#2-Gd(4)-O(7S)	69.6(6)
O(1A)#2-Gd(2)-O(7)#1	70.7(3)	O(11)#3-Gd(3)-O(1)#3	72.6(3)	O(17)#5-Gd(4)-O(7S)	66.8(5)
O(1A)#1-Gd(2)-O(7)#1	67.3(3)	O(14)-Gd(3)-O(1)#3	73.6(3)	O(1B)-Gd(4)-O(15)	69.6(3)
O(3B)-Gd(2)-O(7)#1	144.4(3)	O(17)-Gd(3)-O(1)#3	85.3(4)	O(4A)#2-Gd(4)-O(15)	135.5(3)
O(3B)#2-Gd(2)-O(7)#1	96.1(3)	O(3A)-Gd(3)-O(2B)#4	138.7(4)	O(18)#2-Gd(4)-O(15)	62.5(4)
O(3B)#1-Gd(2)-O(7)#1	137.4(3)	O(4A)#3-Gd(3)-O(2B)#4	69.7(3)	O(6)#2-Gd(4)-O(15)	77.5(3)
O(1A)-Gd(2)-O(7)	67.3(3)	O(2A)#3-Gd(3)-O(2B)#4	67.7(3)	O(4)#2-Gd(4)-O(15)	139.5(4)
O(1A)#2-Gd(2)-O(7)	131.1(3)	O(11)#3-Gd(3)-O(2B)#4	92.4(3)	O(17)#5-Gd(4)-O(15)	121.1(3)
O(1A)#1-Gd(2)-O(7)	70.7(3)	O(14)-Gd(3)-O(2B)#4	141.9(3)	O(7S)-Gd(4)-O(15)	111.2(6)
O(3B)-Gd(2)-O(7)	137.4(3)	O(17)-Gd(3)-O(2B)#4	79.8(3)	O(10)-Ni(1)-O(5)#2	92.7(4)
O(3B)#2-Gd(2)-O(7)	144.4(3)	O(1)#3-Gd(3)-O(2B)#4	134.7(3)	O(10)-Ni(1)-O(7)#2	172.3(3)
O(5)#2-Ni(1)-O(7)#2	91.3(4)	O(4A)-Ni(4)-O(4)	82.2(4)	O(6S)#1-Gd(5)-O(7W)	63.2(13)
O(10)-Ni(1)-O(1A)	100.5(4)	O(1)-Ni(4)-O(4)	97.0(4)	O(3S)-S(1A)-O(2S)#3	114.1(8)
O(5)#2-Ni(1)-O(1A)	80.9(3)	O(4A)-Ni(4)-O(12)	103.7(4)	O(3S)-S(1A)-O(2S)	114.1(8)

O(7)#2-Ni(1)-O(1A)	86.6(3)	O(1)-Ni(4)-O(12)	88.0(4)	O(2S)#3-S(1A)-O(2S)	100.1(9)
O(10)-Ni(1)-O(8)	87.2(4)	O(4)-Ni(4)-O(12)	172.8(4)	O(3S)-S(1A)-O(1S)	101.5(12)
O(5)#2-Ni(1)-O(8)	176.1(4)	O(4A)-Ni(4)-O(1W)	98.6(4)	O(2S)#3-S(1A)-O(1S)	113.8(6)
O(7)#2-Ni(1)-O(8)	89.3(4)	O(1)-Ni(4)-O(1W)	175.6(5)	O(2S)-S(1A)-O(1S)	113.8(6)
O(1A)-Ni(1)-O(8)	95.2(4)	O(4)-Ni(4)-O(1W)	87.3(5)	O(4S)-S(1B)-O(2S)#3	112.7(16)
O(2)-Ni(2)-O(2)#3	87.5(7)	O(12)-Ni(4)-O(1W)	87.8(4)	O(2S)#3-S(1B)-O(2S)	103.7(15)
O(2)-Ni(2)-O(14)#3	91.4(4)	O(8W)-Gd(5)-O(6W)	137(2)	O(6S)-S(2)-O(7S)	106.8(13)
O(2)#3-Ni(2)-O(14)#3	176.9(4)	O(8W)-Gd(5)-O(3)	78.0(17)	O(6S)-S(2)-O(7S)#3	106.8(13)
O(2)-Ni(2)-O(14)	176.9(4)	O(6W)-Gd(5)-O(3)	145.0(16)	O(7S)-S(2)-O(7S)#3	96.2(18)
O(2)#3-Ni(2)-O(14)	91.4(4)	O(8W)-Gd(5)-O(7W)#6	68(2)	O(6S)-S(2)-O(5S)	106.1(18)
O(14)#3-Ni(2)-O(14)	89.4(5)	O(6W)-Gd(5)-O(7W)#6	73(2)	O(7S)-S(2)-O(5S)	119.9(12)
O(2)-Ni(2)-O(3A)	100.9(4)	O(3)-Gd(5)-O(7W)#6	137.8(15)	O(7S)#3-S(2)-O(5S)	119.9(12)
O(2)#3-Ni(2)-O(3A)	100.9(4)	O(8W)-Gd(5)-O(7S)#1	136.4(16)	Gd(5)#5-O(6S)-Gd(5)#2	95.5(11)
O(14)#3-Ni(2)-O(3A)	82.2(4)	O(6W)-Gd(5)-O(7S)#1	74.8(17)	Gd(4)-O(7S)-Gd(5)#2	105.0(6)
O(14)-Ni(2)-O(3A)	82.2(4)	O(3)-Gd(5)-O(7S)#1	75.4(8)	Gd(1)-O(1A)-Gd(2)	112.6(3)
O(13)#3-Ni(3)-O(2A)	101.7(4)	O(7W)#6-Gd(5)-O(7S)#1	146.7(15)	Gd(1)-O(2A)-Gd(3)#3	118.6(3)
O(13)#3-Ni(3)-O(16)	89.5(4)	O(8W)-Gd(5)-O(6S)#1	145.0(18)	Gd(3)-O(3A)-Gd(3)#3	115.9(6)
O(2A)-Ni(3)-O(16)	97.1(4)	O(6W)-Gd(5)-O(6S)#1	71.0(15)	Gd(3)#3-O(4A)-Gd(4)#1	114.8(3)
O(13)#3-Ni(3)-O(9)	173.7(4)	O(3)-Gd(5)-O(6S)#1	78.1(8)	Gd(1)-O(15)-Gd(4)	107.9(4)
O(2A)-Ni(3)-O(9)	84.6(3)	O(7W)#6-Gd(5)-O(6S)#1	118.1(15)	Gd(4)#4-O(17)-Gd(3)	108.2(3)
O(16)-Ni(3)-O(9)	89.2(4)	O(7S)#1-Gd(5)-O(6S)#1	58.8(7)	Gd(3)#5-O(2B)-Gd(1)#2	105.8(3)
O(13)#3-Ni(3)-O(11)	93.4(4)	O(8W)-Gd(5)-O(7W)	83(2)	Gd(2)-O(3B)-Gd(1)	106.2(3)
O(2A)-Ni(3)-O(11)	82.7(3)	O(6W)-Gd(5)-O(7W)	114.3(18)	Gd(5)#3-O(6W)-Gd(5)	117.0(3)
O(16)-Ni(3)-O(11)	177.0(4)	O(3)-Gd(5)-O(7W)	62.7(12)	Gd(5)#7-O(7W)-Gd(5)	149.0(2)

References

 (1) (a) Guo, F.-S.; Chen, Y.-C.; Liu, J.-L.; Leng, J.-D.; Meng, Z.-S.; Vra' bel, P.; Orenda', M.; Tong, M.-L. A large cryogenic magnetocaloric effect exhibited at low field by a 3D ferromagnetically coupled Mn^(II)–Gd^(III) framework material. *Chem. Commun.* 2012, 48, 12219-12221. (b) Zhao, X.; Xiao, B.; Fletcher, A. J.; Thomas, K. M.; Bradshaw, D.; Rosseinsky, M. J. Hysteretic Adsorption and Desorption of Hydrogen by Nanoporous Metal-Organic Frameworks. *Science* 2004, 306, 1012-1015. (c) Kong, X.-J., Ren, Y.-P., Long, L.-S., Zheng, Z., Huang, R.-B., Zheng, L.-S. A Keplerate Magnetic Cluster Featuring an Icosidodecahedron of Ni^(II) Ions Encapsulating a Dodecahedron of La^(III) Ions. *J. Am. Chem. Soc.* 2007, 129, 7016–7017. (d) Karotsis, G., Evangelisti, M., Dalgarno, S., Brechin, E. A Calix[4]arene 3d/4f Magnetic Cooler. *Angew. Chem., Int. Ed.* 2009, 48, 9928–9931.

- (2) Chen, W.-P.; Singleton, J.; Qin, L.; Camón, A.; Engelhardt, L.; Luis, F.; Winpenny, R. E. P.; Zheng, Y.-Z. Quantum Monte Carlo Simulations of a Giant {Ni₂₁Gd₂₀} Cage with a S = 91 Spin Ground State. *Nat. Comm.* 2018, 9, 1-6.
- (3) Kong, X.-J.; Ren, Y.-P.; Long, L.-S.; Zheng, Z.; Nichol, G.; Huang, R.-B.; Zheng, L.-S. Dual Shell-Like Magnetic Clusters Containing Ni^{II} and Ln^{III} (Ln = La, Pr, and Nd) Ions. *Inorg. Chem.* **2008**, *47*, 2728-2739.
- (4) Cui, C.-H.; He, X.-X.; Lin, Q.-F.; Luo, X.-M.; Xu, Y. Two Nanosized Cage-Like Ln₂₀Ni₂₁ Clusters Exhibiting Antiferromagnetic Properties. *Inorg. Chem. Commun.* 2018, 90, 101-104.
- (5) Rao, K. P.; Rao, C. N. R. Coordination Polymers and Hybrid Networks of Different Dimensionalities Formed by Metal Sulfites. *Inorg. Chem.* 2007, *46*, 2511-2518.
- (6) Giauque, W. F.; MacDougall, D. P. Attainment of Temperatures Below 1° Absolute by Demagnetization of Gd₂(SO₄)₃·8H₂O. *Phys. Rev.* **1933**, *43*, 768.
- (7) Papatriantafyllopoulou, C.; Manessi-Zoupa, E.; Escuer, A.; Perlepes, S. P. The Sulfate Ligand as a Promising "Player" in 3d-metal Cluster Chemistry. *Inorg. Chim. Acta.* **2009**, *362*, 634-650.
- (8) Rao, C. N. R.; Natarajan, S.; Vaidhyanathan, R. Metal Carboxylates with Open Architectures. *Angew. Chem., Int. Ed.* **2004**, *43*, 1466-1496.
- (9) (a) Lun, H.-J.; Xu, L.; Kong, X.-J.; Long, L.-S.; Zheng, L.-S. A High-Symmetry Double-Shell Gd₃₀Co₁₂ Cluster Exhibiting a Large Magnetocaloric Effect. *Inorg. Chem.* 2021, DOI: 10.1021/acs.inorgchem.1c00993. (b) Chen, W.-P.; Liao, P.-Q.; Yu, Y.; Zheng, Z.; Chen, X.-M.; Zheng, Y.-Z. A Mixed-Ligand Approach for a Gigantic and Hollow Heterometallic Cage {Ni₆₄RE₉₆} for Gas Separation and Magnetic Cooling Applications. *Angew. Chem., Int. Ed.* 2016, *55*, 9375-9379.
- (10) Chen, W.-P.; Liao, P.-Q.; Jin, P.-B.; Zhang, L.; Ling, B.-K.; Wang, S.-C.; Chan, Y.-T.; Chen, X.-M.; Zheng, Y.-Z. The Gigantic {Ni₃₆Gd₁₀₂} Hexagon: a Sulfate-Templated "Star-of-David" for Photocatalytic CO₂ Reduction and Magnetic Cooling. J. Am. Chem. Soc. **2020**, 142, 4663-4670.
- (11) Peng, J.-B.; Zhang, Q.-C.; Kong, X.-J.; Zheng, Y.-Z.; Ren, Y.-P.; Long, L.-S.; Huang, R.-B.; Zheng, L.-S.; Zheng, Z.-P. High-Nuclearity 3d-4f Clusters as Enhanced Magnetic Coolers and Molecular Magnets. J. Am. Chem. Soc. 2012, 134, 3314-3317.
- (12) Lin, Q.-F.; Li, J.; Luo, X.-M.; Cui, C.-H.; Song, Y., Xu, Y. Incorporation of Silicon-Oxygen Tetrahedron into Novel High-Nuclearity Nanosized 3d-4f Heterometallic Clusters. *Inorg. Chem.* 2018, 57, 4799-4802.
- (13) Liu, D.-P.; Lin, X.-P.; Zhang, H.; Zheng, X.-Y.; Zhuang, G.-L.; Kong, X.-J.; Long, L.-S.; Zheng, L.-S. Magnetic Properties of a Single-Molecule Lanthanide-Transition-Metal Compound Containing 52 Gadolinium and 56 Nickel At-oms. *Angew. Chem.*, *Int. Ed.* **2016**, *55*, 4532-4536.
- (14) Peng, J.-B.; Zhang, Q.-C.; Kong, X.-J.; Ren, Y.-P.; Long, L.-S.; Huang, R.-B.; Zheng, L.-S.; Zheng, Z.-P. A 48-Metal Cluster Exhibiting a Large Magnetocaloric Effect. *Angew. Chem., Int. Ed.* 2011, 50, 10649-10652.

- (15) Evangelisti, M.; Roubeau, O.; Palacios, E.; Camón, A.; Hooper, T. N.; Brechin, E. K.; Alonso, J. J. Cryogenic Magnetocaloric Effect in a Ferromagnetic Molecular Dimer. *Angew. Chem., Int. Ed.* **2011**, *50*, 6606-6609.
- (16) Zheng, Y.; Zhang, Q.-C.; Long, L.-S.; Huang, R.-B.; Müller, A.; Schnack, J.; Zheng, Z.-P. Molybdate Templated Assembly of Ln₁₂Mo₄-Type Clusters (Ln=Sm, Eu, Gd) Containing a Truncated Tetrahedron Core. *Chem. Commun.* 2013, 49, 36-38.
- (17) Wang, P.; Shannigrahi, S.; Yakovlev, N. L.; Andy Hor, T. S. Facile Self-Assembly of Intermetallic {Ni₂Gd₂} Cubane Aggregate for Magnetic Refrigeration. *Chem. Asian J.* 2013, *8*, 2943-2946.
- (18) Zheng, Y.-Z.; Pineda, E. M.; Helliwell, M.; Winpenny, R. E. P. Mn^{II}-Gd^{III} Phosphonate Cages with a Large Magnetocaloric Effect. *Chem. Eur. J.* 2012, 18, 4161-4165.
- (19) Zheng, Y.-Z.; Evangelisti, M.; Tuna, F.; Winpenny, R. E. P. Co-Ln Mixed-Metal Phosphonate Grids and Cages as Molecular Magnetic Refrigerants. J. Am. Chem. Soc. 2012, 134, 1057-1065.
- (20) Pineda, E. M.; Tuna, F.; Pritchard, R. G.; Regan, A. C.; Winpenny, R. E.; McInnes, E. J. Molecular Amino-Phosphonate Cobalt-Lanthanide Clusters. *Chem. Commun.* 2013, 49, 3522-3524.
- (21) Pineda, E. M.; Tuna, F.; Zheng, Y.-Z.; Winpenny, R. E. P.; McInnes, E. J. Wells-Dawson Cages as Molecular Refrigerants. *Inorg. Chem.* 2013, 52, 13702-13707.
- (22) Rajeshkumar, T.; Annadata, H. V.; Evangelisti, M.; Langley, S. K.; Chilton, N. F.; Murray, K. S.; Rajaraman, G. Acetic Acid-Assisted Solution Process for Growth of Complex Copper Sulfide Microtubes Constructed by Hexagonal Nanoflakes. *Inorg. Chem.* 2015, *54*, 1661-1670.
- (23) Gabrielle, D.; Rudolf A. HOW TO RECOGNIZE O²⁻, OH⁻, AND H₂O IN CRYSTAL STRUCTURES DETERMINED BY X-RAYS. *Am. Mineral.* 1970, 55, 1003-1015.
- (24) Lun, H., Du, M., Wang, D., et al. Double-Propeller-like Heterometallic 3d-4f Clusters Ln₁₈Co₇. *Inorg. Chem.* **2020**, *59*, 7900-7904.