SUPPORTING INFORMATION

Monitoring Spin-Crossover phenomena via Re(I) luminescence in hybrid Fe(II) silica coated nanoparticles

Ismael Francisco Díaz-Ortega,^{†,‡} Eva Luz Fernández-Barbosa,[†] Silvia Titos-Padilla,[†] Simon J. A. Pope,[∥] Juan-Ramón Jiménez,^{*†} Enrique Colacio^{*†} and Juan Manuel Herrera.^{*†}

† Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada and Unidad de Excelencia de Química (UEQ), Avda. Fuentenueva s/n, 18071, Granada, Spain. ‡ Departamento de Química y Física-CIESOL, Universidad de Almería, Ctra. Sacramento s/n, 04120, Almería. [¶]Cardiff School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK. 1.- X-Ray Powder Diffraction Analysis.

Figure S1. Experimental XRPD diagrams for bulk $[Fe(NH_2-Trz)_3](BF_4)_2$ polymer (black) and samples 1 (red) and 1@SiO₂ (blue).

2.- Elemental Analysis.

The molecular weights determined by elemental analysis were considered to determine the molar magnetic susceptibility.

		C	N	Н	
Sample					Proposed Formula
····· F		[%]	[%]	[%]	1
				[,0]	
	Faund	14.70	22.11	2 1 7	$\left[E_{2}(\mathbf{M} \mathbf{H} \mathbf{T}_{rr}) \right] (\mathbf{D} \mathbf{E}) \mathbf{H} \mathbf{O}$
	гоипа	14.70	33.11	3.17	$[Fe(NH_2ITZ)_3](BF_4)_2 \cdot H_2O$
1					
	calcd	14.39	33.60	2.82	$MW = 500.08 \text{ gmol}^{-1}$
	Found	12.29	28.51	2.87	$[Fe(NH_2Trz)_3](BF_4)_2 \cdot (SiO_2)_{1.5} \cdot H_2O$
1@SiO ₂					
	calcd	12 20	28.48	2 39	$MW = 590.03 \text{ gmol}^{-1}$
	culcu	12.20	20.10	2.57	
	Found	1/ 95	28 70	2.08	
10000	Found	14.83	28.79	2.98	
$I(a)SIO_2/Re$					
	calcd				

 Table S1.- Elemental analyses for samples 1, 1@SiO2 and 1@SiO2/Re.

3.- NMR characterization.

Figure S2.-¹H-NMR spectrum of Re in CD₃Cl.

Figure S3.- Diffuse reflectance (dotted lines) and Emission (full lines) spectra of $1@SiO_2/Re$ measured at T = 280 K (blue) and T = 330 K (red).

Solid state samples were excited at $\lambda_{exc.} = 350$ nm at two different temperatures, T = 273 K and T = 330 K. Decays were fitted to the two or three-exponential functions:

$$I = A_1 e^{-\frac{t}{\tau_1}} + A_2 e^{-\frac{t}{\tau_2}} + y_0$$
 eq. 1

$$I = A_1 e^{-\frac{t}{\tau_1}} + A_2 e^{-\frac{t}{\tau_2}} + A_3 e^{-\frac{t}{\tau_3}} + y_0$$
eq. 2

The mean lifetime value was calculated as:

$$\tau_{mean} = \frac{(A_1 \times \tau_1 + A_2 \times \tau_2 + ...)}{(A_1 + A_2 + ...)}$$
eq. 3

Figure S4.- Excited state decay profiles of **Re** at 273 and 330 K (black dots) and biexponential fits (red).

Figure S5.- Excited state decay profiles of 1@SiO₂/Re at 273 and 330 K (black dots) and biexponential fits (red).

Compounds	$ au_1$ / ns	$ au_2$ / ns	$ au_3$ / ns	Al	A2	<i>A3</i>	$ au_{ m mean}/n$ s
Re ($T = 273K$)	720	3421		1986	7845		2875
Re (T = 330 K)	788	2896		2502	7083		2346
1@SiO₂/Re (T 273K)	17	131	780	28626	1798	620	39
1@SiO₂/Re (T 330K)	15	127	701	37848	2390	701	33

Table S2. Excited-state lifetimes ($\lambda_{ex} = 395$ nm) of **Re** and **1@SiO₂/Re** in the solid state at T = 273 K and T = 330 K.

6.- Magnetic Properties of sample 1@SiO₂/Re.

Figure S6. Thermal dependence of the $\chi_M T$ product for sample 1@SiO₂/Re under an applied magnetic field $H_{dc} = 1$ T.

3.- Thermal dependence of the excitation spectrum for sample 1@SiO₂/Re.

Figure S7.- Variation of the excitation spectra of $1@SiO_2$ upon heating (left) and cooling (right) cycles.