Electronic supplementary information for

Synthesis and characterization of rare-earth metallate amido complexes bearing 2-amidate-functionalized indolyl ligand and their application in the hydroboration of esters with pinacolborane

Yun Wei,*† Qin Bao,† Lulu, Song,† Dongjing Hong,† Jianjian Gao,† Shaowu Wang,*†‡§ Xiancui Zhu,† Shuangliu Zhou,† Xiaolong Mu†

[†]Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China,

[‡]Anhui Laboratory of Clean Catalytic Engineering, Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. China

§ State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China

	1a (Y)	1b (Nd)	1c (Sm)	1d (Gd)
E a mar 1 -	C ₉₇ H ₁₅₂ ClY ₃ Li	C ₉₇ H ₁₅₂ ClNd ₃ Li	C ₉₇ H ₁₅₂ ClSm ₃ LiN ₉	C97H152ClGd3LiNg
Formula	$N_9O_7Si_6$	$N_9O_7Si_6$	O_7Si_6	O_7Si_6
FW	2033.93	2199.92	2218.25	2238.95
<i>T</i> (K)	298.15	298.15	298.15	298.15
λ(Å)	0.71073	0.71073	0.71073	0.71073
Crystal system	triclinic	triclinic	triclinic	triclinic
Space group	$P\overline{1}$	$P\overline{1}$	Pī	$P\overline{1}$
a(Å)	19.816(2)	19.8695(14)	19.8895(16)	19.8493(16)
b(Å)	20.172(2)	20.1675(14)	20.3112(17)	20.2615(17)
c(Å)	21.517(2)	21.5072(15)	21.6747(18	21.6207(18)
$\alpha(\text{deg})$	67.6430(10)	68.2219(10)	67.0740(10)	67.2240(10)
$\beta(\text{deg})$	83.979(2)	84.2175(10)	83.8230(10)	83.7930(10)
y(deg)	61.6610(10)	61.4812(9)	61.8000(10)	61.7530(10)
v(Å ³)	6970.8(12)	7001.2(9)	7075.6(10)	7032.3(10)
Z	2	2	2	2
$D_{calcd(mg/m^3)}$	0.969	1.044	1.041	1.057
μ (mm ⁻¹)	1.350	1.207	1.339	1.509
F(000)	2148	2274	2286	2298
θ range(deg)	1.028-27.816	1.024-25.000	1.025-27.476	1.026-27.551
Reflections collected/unique	81971/31977	69464/24635	83569/31916	83693/31936
R(int)	0.0984	0.1055	0.0642	0.1177
Goodness-of-fit on F^2	0.956	0.963	0.995	0.938
$R_1, wR_2[I > 2\sigma(I)]$	0.0774, 0.1811	0.0705, 0.1612	0.0587, 0.1378	0.0701, 0.1509
R_1, wR_2 (all data)	0.1939, 0.2275	0.1627, 0.2029	0.1265, 0.1675	0.1749, 0.1922
Laegest diff.peak and hole(e. Å ⁻³⁾	0.784 and - 0.505	1.012 and - 0.502	2.063 and -0.642	1.407 and -0.523

Table S1. Summary of crystal and refinement data for complexes 1a-1d.

	1e (Dy)	1f (Er)	1g (Yb)
Formula	$C_{97}H_{152}ClDy_3LiN_9O_7Si_6$	$C_{97}H_{152}ClEr_3LiN_9O_7Si_6$	C ₉₇ H ₁₅₂ ClYb ₃ LiN ₉ O ₇ Si
FW	2254.70	2268.98	2286.32
<i>T</i> (K)	298.15	298.15	298.15
λ(Å)	0.71073	0.71073	0.71073
Crystal system	triclinic	triclinic	triclinic
Space group	Pī	$P\overline{1}$	Pī
a(Å)	19.827(3)	19.7581(15)	19.7356(17)
b(Å)	20.177(3)	20.0890(15)	20.0788(18)
c(Å)	21.529(3)	21.4239(16)	21.4057(19)
$\alpha(\text{deg})$	67.638(2)	67.9980(10)	68.0020(10)
$\beta(\text{deg})$	83.935(2)	84.0600(10)	84.0650(10)
γ(deg)	61.667(2)	61.6270(10)	61.6860(10)
v(Å ³)	6981.1(18)	6908.1(9)	6895.2(11)
Ζ	2	2	2
$D_{calcd(mg/m^3)}$	1.073	1.091	1.101
$\mu(\text{mm}^{-1})$	1.700	1.918	2.131
F(000)	2310	2322	2334
θ range(deg)	1.027- 27.565	1.029-27.475	1.030-27.437
Reflections collected/unique	81915/ 31769	81890/31261	81666/31109
R(int)	0.0905	0.0773	0.0749
Goodness-of-fit on F^2	1.017	1.007	1.022
$R_1, wR_2[I > 2\sigma(I)]$	0.0787, 0.1770	0.0641, 0.1405	0.0687, 0.1591
R_1, wR_2 (all data)	0.1751, 0.2199	0.1425, 0.1763	0.1491, 0.1959
Laegest diff.peak and hole(e. Å ⁻³⁾	2.804 and -1.036	2.851 and -0.982	2.827 and -0.980

Table S2. Summary of crystal and refinement data for complexes 1e-1g.

Figure S1. Molecular structure of complex **1b** with the probability ellipsoids drawn at the 25% level. Hydrogen atoms, 2,6-diisopropylphenyl groups on the N2, N4, N6 atoms, methyl groups on the Si atoms, and $\text{Li}(\text{THF})_4^+$ are omitted for clarity.

Figure S2. Molecular structure of complex **1c** with the probability ellipsoids drawn at the 25% level. Hydrogen atoms, 2,6-diisopropylphenyl groups on the N2, N4, N6 atoms, methyl groups on the Si atoms, and $\text{Li}(\text{THF})_4^+$ are omitted for clarity.

Figure S3. Molecular structure of complex **1d** with the probability ellipsoids drawn at the 25% level. Hydrogen atoms, 2,6-diisopropylphenyl groups on the N2, N4, N6 atoms, methyl groups on the Si atoms, and $\text{Li}(\text{THF})_4^+$ are omitted for clarity.

Figure S4. Molecular structure of complex **1e** with the probability ellipsoids drawn at the 25% level. Hydrogen atoms, 2,6-diisopropylphenyl groups on the N2, N4, N6 atoms, methyl groups on the Si atoms, and $\text{Li}(\text{THF})_4^+$ are omitted for clarity.

.

Figure S5. Molecular structure of complex **1f** with the probability ellipsoids drawn at the 25% level. Hydrogen atoms, 2,6-diisopropylphenyl groups on the N2, N4, N6 atoms, methyl groups on the Si atoms, and $\text{Li}(\text{THF})_4^+$ are omitted for clarity.

Figure S6. Molecular structure of complex **1g** with the probability ellipsoids drawn at the 25% level. Hydrogen atoms, 2,6-diisopropylphenyl groups on the N2, N4, N6 atoms, methyl groups on the Si atoms, and $\text{Li}(\text{THF})_4^+$ are omitted for clarity.

Figure S7. ¹H NMR spectrum (500 MHz, THF- d_8 , 298 K) of complex 1a (\star *n*-hexane, • HNSiMe₃).

Figure S8. ¹³C NMR spectrum (125 MHz, THF-*d*₈, 298 K) of complex 1a.

Figure S9. 2D NMR COSY spectrum (500 MHz, THF-d₈, 298 K) of complex 1a.

Figure S10. 2D NMR HSQC spectrum (500 MHz, THF-*d*₈, 298 K) of complex 1a.

Figure S11. ¹H NMR spectrum (500 MHz, THF- d_8 , 298 K) of complex 1c (\checkmark toluene, \bigstar *n*-hexane, \bullet HNSiMe₃).

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 Figure S12. ¹³C NMR spectrum (125 MHz, THF- d_8 , 298 K) of complex 1c (▼ toluene, ★ *n*-

hexane, • HNSiMe₃).

Figure S13. 2D NMR COSY spectrum (500 MHz, THF-*d*₈, 298 K) of complex 1c.

Figure S14. 2D NMR HSQC spectrum (500 MHz, THF-*d*₈, 298 K) of complex 1c.

Characterization of ester hydroboration products

¹H NMR (500 MHz, C₆D₆, 298 K): δ 7.32 (d, 2H, J = 10.00 Hz, $PhCH_2OBpin$), 7.13-7.04 (m, 3H, $PhCH_2OBpin$), 4.96 (s, 2H, $PhCH_2OBpin$), 3.51 (s, 3H, CH_3OBpin). ¹³C NMR (125 MHz, C₆D₆, 298 K): δ 140.1, 128.6, 127.6, 127.1, 82.7, 67.0, 52.4, 24.7. The methyl peaks of -OBpin in ¹H NMR are overlapping in the region 0.99-1.06 ppm. ¹¹B NMR (160 MHz, C₆D₆, 298 K): δ 22.7 (PhCH₂OBpin/MeOBpin).

¹H NMR (500 MHz, C₆D₆, 298 K): δ 7.32 (d, 2H, J = 10.00 Hz, $PhCH_2OBpin$), 7.13-7.04 (m, 3H, $PhCH_2OBpin$), 4.96 (s, 2H, $PhCH_2OBpin$), 3.92 (q, 2H, J = 5.00 Hz, CH_3CH_2OBpin), 1.11 (t, 3H, J = 10.00, CH_3CH_2OBpin). ¹³C NMR (125 MHz, C₆D₆, 298 K): δ 140.1, 128.6, 127.6, 127.1, 82.7, 67.0, 60.7, 24.7, 17.5. The methyl peaks of -OBpin in ¹H NMR are overlapping in the region 1.02-1.07 ppm. ¹¹B NMR (160 MHz, C₆D₆, 298 K): δ 22.6 (PhCH₂OBpin).

¹H NMR (500 MHz, C₆D₆, 298 K): δ 7.27 (d, 2H, J = 10.00 Hz, 4-NH₂*Ph*CH₂OBpin), 7.04 (d, 2H, J = 5.00 Hz, 4-NH₂*Ph*CH₂OBpin), 4.90 (s, 2H, 4-NH₂PhCH₂OBpin), 3.92 (q, 2H, J = 5.00 Hz, CH₃CH₂OBpin), 1.11 (t, 3H, J = 10.00, CH₃CH₂OBpin). ¹³C NMR (125 MHz, C₆D₆, 298 K): δ 143.4,131.7, 128.6, 117.9, 82.7, 67.0, 60.7, 24.7, 17.5. The methyl peaks of -OBpin in ¹H NMR are overlapping in the region 1.02-1.09 ppm. ¹¹B NMR NMR (160 MHz, C₆D₆, 298 K): δ 24.2 (NH₂PhCH₂OBpin), 22.6 (EtOBpin).

¹H NMR (500 MHz, C₆D₆, 298 K): δ 7.28 (d, 2H, J = 10.00 Hz, 4-CH₃ONH₂*Ph*CH₂OBpin), 6.76 (d, 2H, J = 10.00 Hz, 4-CH₃ONH₂*Ph*CH₂OBpin), 4.96 (s, 2H, 4-CH₃ONH₂PhCH₂OBpin), 3.27 (s, 3H, 4-CH₃ONH₂PhCH₂OBpin), 3.51 (s, 3H, CH₃OBpin). ¹³C NMR (125 MHz, C₆D₆, 298 K): δ 159.7, 132.2, 128.9, 114.1, 82.7, 66.8, 54.8, 52.4, 24.7. The methyl peaks of -OBpin in ¹H NMR are overlapping in the region 0.99-1.05 ppm. ¹¹B NMR (160 MHz, C₆D₆): 22.7 (4-MeOPhCH₂OBpin)/MeOBpin).

¹H NMR (500 MHz, C₆D₆, 298 K): δ 7.06 (d, 2H, J = 10.00 Hz, 4-ClPhCH₂OBpin), 6.99 (d, 2H, J = 10.00 Hz, 4-ClPhCH₂OBpin), 4.76 (s, 2H, 4-ClPhCH₂OBpin), 3.51 (s, 3H, CH₃OBpin). ¹³C NMR (125 MHz, C₆D₆, 298 K): δ 138.4, 133.4, 128.7, 128.4, 82.9, 66.1, 52.4, 24.7. The methyl peaks of -OBpin in ¹H NMR are overlapping in the region 1.03-1.04 ppm. ¹¹B NMR (160 MHz, C₆D₆, 298 K): δ 22.7 (Cl-4-PhCH₂OBpin)/MeOBpin).

¹H NMR (500 MHz, C₆D₆, 298 K): δ 7.29 (d, 2H, J = 5.00 Hz, 4-CF₃*Ph*CH₂OBpin), 7.07 (d, 2H, J = 10.00 Hz, 4-CF₃*Ph*CH₂OBpin), 4.79 (s, 2H, 4-CF₃PhCH₂OBpin), 3.51 (s, 3H, CH₃OBpin). ¹³C NMR (125 MHz, C₆D₆, 298 K): δ 143.9, 129.8, 129.5, 125.5, 125.4, 83.0, 82.5, 66.0, 52.4, 24.7. The methyl peaks of -OBpin in ¹H NMR are overlapping in the region 0.99-1.05 ppm. ¹¹B NMR (160 MHz, C₆D₆, 298 K): δ 22.7 (CF₃-4-PhCH₂OBpin/MeOBpin).

7)

¹H NMR (500 MHz, C₆D₆, 298 K): δ 7.56 (d, 1H, J = 5.00 Hz, 2-CH₃*Ph*CH₂OBpin), 7.09-7.05 (m, 2H, 2-CH₃*Ph*CH₂OBpin), 6.95(d, 1H, J = 10.00 Hz, 2-CH₃*Ph*CH₂OBpin), 4.98 (s, 2H, 2-CH₃*Ph*CH₂OBpin), 3.51 (s, 3H, CH₃OBpin), 2.07 (s, 3H, 2-CH₃PhCH₂OBpin). ¹³C NMR (125 MHz, C₆D₆, 298 K): δ 137.9,135.8, 130.3, 127.7, 127.5, 126.2, 82.7, 82.5, 65.3, 52.4, 24.9, 18.6. The methyl peaks of -OBpin in ¹H NMR are overlapping in the region 0.99-1.06 ppm. ¹¹B NMR (160 MHz, C₆D₆, 298 K): δ 22.7 (CH₃-2-PhCH₂OBpin/MeOBpin).

¹H NMR (500 MHz, C₆D₆, 298 K): δ 7.28 (d, 2H, J = 10.00 Hz, 4-CH₃*Ph*CH₂OBpin), 6.97 (d, 2H, J = 10.00 Hz, 4-CH₃*Ph*CH₂OBpin), 4.99 (s, 2H, 4-CH₃PhCH₂OBpin), 3.93 (q, 2H, J = 5.00, CH₃CH₂OBpin), 2.08 (s, 3H, 4-CH₃PhCH₂OBpin), 1.12 (t, 3H, J = 10.00, CH₃CH₂OBpin). ¹³C NMR (125 MHz, C₆D₆, 298 K): δ 137.2, 137.0, 129.3, 127.3, 82.7, 66.9, 60.7, 24.9, 17.5. The methyl peaks of -OBpin in ¹H NMR are overlapping in the region 0.99-1.05 ppm. ¹¹B NMR (160 MHz, C₆D₆, 298 K): δ 22.6 (CH₃-4-PhCH₂OBpin/MeOBpin).

¹H NMR (500 MHz, C₆D₆, 298 K): δ 7.78 (d, 2H, J = 10.00 Hz, 4-NO₂*Ph*CH₂OBpin), 6.89 (d, 2H, J = 5.00 Hz, 4-NO₂*Ph*CH₂OBpin), 4.68 (s, 2H, 4-NO₂PhCH₂OBpin), 3.92 (q, 2H, J = 10.00, CH₃CH₂OBpin), 1.12 (t, 3H, J = 10.00 Hz, CH₃CH₂OBpin). ¹³C NMR (125 MHz, C₆D₆, 298 K): δ 147.6, 146.5,126.7, 123.6, 83.1, 82.4, 65.6, 60,7, 24.7, 17.5. The methyl peaks of -OBpin in ¹H NMR are overlapping in the region 1.03-1.09 ppm. ¹¹B NMR (160 MHz, C₆D₆, 298 K): δ 22.6 (NO₂-4-PhCH₂OBpin)/EtOBpin).

¹H NMR (500 MHz, C₆D₆, 298 K): δ 7.43-7.46 (m, 1H, 2-F*Ph*CH₂OBpin), 6.83-6.72 (m, 3H, 2-F*Ph*CH₂OBpin), 5.11 (s, 2H, 2-FPhCH₂OBpin), 3.51 (s, 3H, CH₃OBpin). ¹³C NMR (125 MHz, C₆D₆, 298 K): δ 161.6, 159.7, 129.2, 124.3, 115.3, 115.1, 82.9, 82.5, 61.0, 52.4, 24.9, 24.7. The methyl peaks of -OBpin in ¹H NMR are overlapping in the region 0.99-1.04 ppm. ¹¹B NMR (160 MHz, C₆D₆, 298 K): δ 22.7 (F-2-PhCH₂OBpin/MeO*B*pin).

¹H NMR (500 MHz, C₆D₆, 298 K): δ 7.58 (d, 1H, J = 10.00 Hz, 2-Br*Ph*CH₂OBpin), 7.56 (d, 1H, J = 10.00 Hz, 2-Br*Ph*CH₂OBpin), 6.93 (d, 1H, J = 10.00 Hz, 2-Br*Ph*CH₂OBpin), 6.66 (d, 1H, J = 5.00 Hz, 2-Br*Ph*CH₂OBpin), 5.14 (s, 2H, 2-BrPhCH₂OBpin), 3.51 (s, 3H, CH₃OBpin). ¹³C NMR (125 MHz, C₆D₆, 298 K): δ 139.0, 132.5, 128.8, 127.6, 121.8, 83.0, 82.5, 66.6, 52.4, 24.9,24.7. The methyl peaks of -OBpin in ¹H NMR are overlapping in the region 1.01-1.04 ppm. ¹¹B NMR (160 MHz, C₆D₆, 298 K): δ 22.7 (Br-2-PhCH₂OBpin/MeOBpin).

12)

¹H NMR (500 MHz, C₆D₆, 298 K): δ 7.04 (s, 1H, CH), 6.14 (d, 1H, J = 5.00 Hz, CH), 6.01(m, 1H, CH), 4.86 (s, 2H, CH₂), 3.51 (s, 3H, CH₃OBpin). ¹³C NMR (125 MHz, C₆D₆, 298 K): δ 153.4, 142.6, 110.5, 108.5, 82.8, 82.5, 59.4, 52.4, 24.7. The methyl peaks of -OBpin in ¹H NMR are overlapping in the region 0.99-1.06 ppm. ¹¹B NMR (160 MHz, C₆D₆, 298 K): δ 22.7 (RCH₂OBpin/MeOBpin).

¹H NMR (500 MHz, C₆D₆, 298 K): δ 4.34 (m, 1H, C*H*), 3.96-3.93 (m, 2H, C*H*₂), 1.67-1.47 (m, 4H, C*H*₂), 1.15 (d, 3H, *J* = 5.00 Hz, C*H*₃). ¹³C NMR (125 MHz, C₆D₆, 298 K): δ 82.4, 82.2, 70.7, 65.0, 34.7, 28.2, 24.7, 22.9. The methyl peaks of -OBpin in ¹H NMR are overlapping in the region 0.99-1.06 ppm. ¹¹B NMR (160 MHz, C₆D₆, 298 K): δ 22.7 (pin*B*O(CH₂)₃CH(CH₃)O*B*pin).

¹H NMR (500 MHz, C_6D_6): δ 3.80 (d, J = 6.0 Hz, 2H, $CyCH_2OBpin$), 3.51 (s, 3H, CH_3OBpin), 1.74-1.72 (m, 2H, $CyCH_2OBpin$), 1.63-1.60 (m, 3H, $CyCH_2OBpin$), 1.55-1.53 (m, 2H, $CyCH_2OBpin$), 0.94-0.89 (m, 4H, $CyCH_2OBpin$). ¹³C NMR (125 MHz, C_6D_6 , 298 K): δ 82.5, 52.4, 70.6, 39.9, 29.7, 26.9, 26.2, 24.8. The methyl peaks of -OBpin in ¹H NMR are overlapping in the region 0.99-1.08 ppm. ¹¹B NMR (160 MHz, C_6D_6 , 298 K): δ 22.5 (CyCH₂OBpin/MeOBpin).

¹H NMR (500 MHz, C₆D₆, 298 K): δ 8.68 (s, 1H, 3-*Py*CH₂OBpin), 8.43 (s, 1H, 3-*Py*CH₂OBpin), 7.31 (s, 1H, 3-*Py*CH₂OBpin), 6.67 (s, 1H, 3-*Py*CH₂OBpin), 4.70 (d, 2H, J = 15.00 Hz, 3-PyCH₂OBpin), 3.51 (s, 3H, CH₃OBpin). ¹³C NMR (125 MHz, C₆D₆, 298 K): δ 149.1, 135.1, 134.3, 129.6, 123.3, 83.0, 82.5, 64.6, 52.3, 24.7. The methyl peaks of -OBpin in ¹H NMR are overlapping in the region 0.99-1.06 ppm. ¹¹B NMR (160 MHz, C₆D₆, 298 K): δ 22.7 (PyCH₂OBpin/MeOBpin).

¹H NMR (500 MHz, C₆D₆, 298 K): δ 8.41 (d, 1H, J = 5.00 Hz, 2-*Py*CH₂OBpin), 7.28 (d, 1H, J = 10.00 Hz, 2-*Py*CH₂OBpin), 7.03 (d, 1H, J = 10.00 Hz, 2-*Py*CH₂OBpin), 6.55 (t, 1H, J = 5.00 Hz, 2-*Py*CH₂OBpin), 5.26 (s, 2H, 2-PyCH₂OBpin), 3.51 (s, 3H, CH₃OBpin). ¹³C NMR (125 MHz, C₆D₆, 298 K): δ 160.0, 148.6, 136.5, 122.1, 119.9, 83.2, 82.7, 82.5, 67.8, 52.4, 24.9, 24.7. The methyl peaks of -OBpin in ¹H NMR are overlapping in the region 0.99-1.07 ppm. ¹¹B NMR (160 MHz, C₆D₆, 298 K): δ 22.7 (PyCH₂OBpin/MeOBpin).

¹H NMR (500 MHz, C₆D₆, 298 K): δ 4.55 (s, 1H, CH₃CHOBpin), 3.90 (d, 2H, *J* = 10.00 Hz, CH₂ OBpin), 1.63 (m, 3H, CH₃CHOBpin). ¹³C NMR (125 MHz, C₆D₆, 298 K): δ 82.6, 82.4, 70.9, 69.7, 24.7, 24.8, 18.7. The methyl peaks of -OBpin in ¹H NMR are overlapping in the region 1.01-1.12 ppm. ¹¹B NMR (160 MHz, C₆D₆, 298 K): δ 22.6 (pin*B*OCH₂CH(CH₃)O*B*pin).

¹H NMR (500 MHz, C₆D₆, 298 K): δ 3.90 (t, 4H, J = 7.50 Hz, CH₂), 1.50-1.47 (m, 4H, CH₂), 1.24-1.22 (m, 4H, CH₂). ¹³C NMR (125 MHz, C₆D₆, 298 K): δ 82.4, 65.0, 32.0, 25.7, 24.8. The

methyl peaks of -OBpin in ¹H NMR are in the region 1.07 ppm. ¹¹B NMR (160 MHz, C₆D₆, 298 K): δ 22.6 (pinBOC₂H₁₂OBpin).

¹H NMR (500 MHz, C₆D₆, 298 K): δ 3.93 (q, 2H, *J* = 5.00 Hz, CH₃CH₂OBpin), 1.12 (t, 3H, *J* = 10.00 Hz, CH₃CH₂OBpin). ¹³C NMR (125 MHz, C₆D₆, 298 K): δ 82.4, 60,7, 24.7, 17.5. The methyl peaks of -OBpin in ¹H NMR are in the 1.10 ppm. ¹¹B NMR (160 MHz, C₆D₆, 298 K): δ 22.6 (EtOBpin).

20)

¹H NMR (500 MHz, C₆D₆, 298 K): δ 3.92 (q, 2H, J = 5.00 Hz, CH₃CH₂OBpin), 1.12 (t, 3H, J = 10.00 Hz, CH₃CH₂OBpin), 1.01(s, 9H, (CH₃)₃COBpin). ¹³C NMR (125 MHz, C₆D₆, 298 K): δ 82.3, 81.7, 73.5, 60.7, 30.2, 24.7, 17.5. The methyl peaks of -OBpin in ¹H NMR are overlapping in the region 1.01-1.05 ppm. ¹¹B NMR (160 MHz, C₆D₆, 298 K): δ 22.6 (EtOBpin), 21.7 ('BuOBpin).

¹H (500 MHz, C₆D₆, 298 K): δ 3.92 (t, 2H, J = 7.50 Hz, CH₂), 3.49 (s, 3H, CH₃OBpin), 1.56-1.51, (m, 2H, CH₂), 1.30-1.22 (m, 10H, CH₂), 0.86 (t, J = 7.00 Hz, 3H, CH₃). ¹³C NMR (125 MHz, C_6D_6 , 298 K): δ 83.1, 82.5, 65.1, 52.4, 32.2, 32.1, 29.7, 25.0, 24.8, 23.1, 14.3. The methyl peaks of -OBpin in ¹H NMR are overlapping in the region 1.00-1.07 ppm. ¹¹B NMR (160 MHz, C_6D_6 , 298 K): δ 22.6 (C₈H₁₇OBpin/MeOBpin).

¹H NMR (500 MHz, C_6D_6 , 298 K): δ 7.28 (d, 1H, J = 10.00 Hz, PhCH), 7.11 (d, 1H, J = 10.00 Hz, PhC*H*), 6.99 (d, 1H, *J* = 5.00 Hz, PhC*H*), 6.82 (d, 1H, *J* = 5.00 Hz, PHC*H*), 4.26 (t, 2H, *J* = 7.50, CH₂), 3.07 (t, 2H, J = 7.50, CH₂). ¹³C NMR (125 MHz, C₆D₆, 298 K): δ 152.7, 131.4, 129.2, 127.6, 123.5, 120.3, 83.3, 83.2, 82.3, 64.8, 33.2, 24.9, 24.7. The methyl peaks of -OBpin in ¹H NMR are overlapping in the region 0.99-1.05 ppm. ¹¹B NMR (160 MHz, C₆D₆, 298 K): δ 22.2 (pinBOPhC₂H₄OBpin).

¹H NMR (500 MHz, C₆D₆, 298 K): δ 7.79 (s, 1H, PhC*H*), 7.61-7.58 (m, 3H, PhC*H*), 7.40 (d, 1H, J = 10.00 Hz, PhCH), 7.24-7.22 (m, 2H, PhCH), 5.11 (s, 2H, CH₂), 3.51 (s, 3H, CH₃OBpin). ¹³C NMR (125 MHz, C₆D₆, 298 K): δ 133.9, 133.4, 128.4, 126.3, 125.9, 125.7, 125.3, 83.2, 83.8, 67.0,

52.4, 24.9. The methyl peaks of -OBpin in ¹H NMR are overlapping in the region 0.99-1.05 ppm. ¹¹B NMR (160 MHz, C₆D₆, 298 K): δ 22.7 (Ph₂CH₂OBpin/MeOBpin).

¹H NMR (500 MHz, C₆D₆, 298 K): δ 7.32 (d, 2H, J = 10.00 Hz, PhC*H*), 7.13-7.04 (m, 3H, PhC*H*), 4.97 (s, 2H, C*H*₂). ¹³C NMR (125 MHz, C₆D₆, 298 K): δ 140.0, 128.6, 127.6, 127.1, 83.2, 82.7, 67.0, 24.9, 24.7. The methyl peaks of -OBpin in ¹H NMR are in the 1.03 ppm. ¹¹B NMR (160 MHz, C₆D₆, 298 K): δ 22.7 (PhCH₂O*B*pin).

¹H NMR (500 MHz, C₆D₆, 298 K): δ 7.20-7.05 (m, 4H, PhC*H*), 6.84 (t, 2H, *J* = 7.50 Hz, PhC*H*), 3.89 (q, 2H, *J* = 7.50, C*H*₂), 1.11 (t, 3H, *J* = 10.00, C*H*₃). ¹³C NMR (125 MHz, C₆D₆, 298 K): δ 154.4, 129.6, 123.3, 120.1, 82.4, 82.3, 60.7, 24.9, 17.5. The methyl peaks of -OBpin in ¹H NMR are overlapping in the region 1.01-1.06 ppm. ¹¹B NMR (160 MHz, C₆D₆, 298 K): δ 22.4 (PhO*B*pin/MeO*B*pin).

¹H NMR (500 MHz, C₆D₆, 298 K): δ 6.84-6.82 (m, 2H, C*H*), 6.66 (m, 1H, C*H*), 5.02 (s, 2H, C*H*₂), 3.51 (s, 3H, C*H*₃OBpin). ¹³C NMR (125 MHz, C₆D₆, 298 K): δ 142.8, 126.8, 126.1, 125.7, 82.9, 82.5, 61.8, 52.4, 24.7. The methyl peaks of -OBpin in ¹H NMR are overlapping in the region 0.99-1.04 ppm. ¹¹B NMR (160 MHz, C₆D₆, 298 K): δ 22.7 (RCH₂OBpin/MeOBpin).

¹H NMR (500 MHz, C₆D₆, 298 K): δ 6.96 (s, 1H, *CH*), 6.93(d, 1H, *J* = 5.0 Hz, *CH*), 6.84(t, 1H, *J* = 5.00 Hz, *CH*), 4.89 (s, 2H, *CH*₂), 3.93 (d, 3H, *J* = 7.50 Hz, *CH*₂), 1.12 (t, 3H, *J* = 5.00 Hz, *CH*₃). ¹³C NMR (125 MHz, C₆D₆, 298 K): δ 141.2, 127.0, 126.0, 122.1, 82.7, 82.4, 62.7, 60.7, 24.9, 17.5. The methyl peaks of -OBpin in ¹H NMR are overlapping in the region 0.99-1.05 ppm. ¹¹B NMR (160 MHz, C₆D₆, 298 K): δ 22.5 (RCH₂OBpin/EtOBpin).

¹H NMR (500 MHz, C₆D₆, 298 K): δ 4.37 (s, 2H, CH₂), 3.51 (s, 3H, CH₃OBpin), 2.01 (s, 1H, CH). ¹³C NMR (125 MHz, C₆D₆, 298 K): δ 83.1, 82.5, 79.8, 73.8, 53.0, 52.4, 24.9, 24.7. The methyl peaks of -OBpin in ¹H NMR are overlapping in the region 1.00-1.06 ppm. ¹¹B NMR (160 MHz,

¹H NMR (500 MHz, C₆D₆, 298 K): δ 7.58 (d, 2H, J = 8.0 Hz , PhC*H*), 7.39 (d, 2H, J = 8.0 Hz , PhC*H*), 5.01 (s, 2H, C*H*₂), 4.86 (s, 2H, C*H*₂), 3.93 (q, 3H, J = 7.5 Hz, C*H*₂), 1.12 (t, 3H, J = 5.00 Hz, C*H*₃). ¹³C NMR (125 MHz, C₆D₆, 298 K): δ 143.0, 138.1 127.4, 127.1, 82.7, 82.4, 82.4, 67.0, 60.7, 47.7, 24.9, 24.7, 17.5. The methyl peaks of -OBpin in ¹H NMR are overlapping in the region 0.99-1.05 ppm. ¹¹B NMR (160 MHz, C₆D₆, 298 K): δ 22.6 ((pinB)₂NCH₂C₆H₄CH₂OBpin/EtOBpin).

¹H NMR (500 MHz, C₆D₆, 298 K): δ 8.39 (d, 1H, J = 7.5 Hz , indole-CH), 7.58 (d, 1H, J = 7.5 Hz , indole-CH), 7.30 (d, 1H, J = 7.0 Hz , indole-CH), 7.20 (t, 1H, J = 6.5 Hz , indole-CH), 6.91(s, 1H, indole-CH), 5.52 (s, 2H, CH₂), 3.92 (q, 2H, CH₂), 1.11 (t, 3H, J = 5.00 Hz, CH₃). ¹³C NMR (125 MHz, C₆D₆, 298 K): δ 142.7, 141.6, 131.4, 123.1, 122.0, 120.6, 115.5, 107.3, 83.9, 82.8, 82.4, 62.1, 60.7, 24.7, 24.5, 17.5. The methyl peaks of -OBpin in ¹H NMR are overlapping in the region 0.96-1.06 ppm. ¹¹B NMR (160 MHz, C₆D₆, 298 K): δ 27.9 (indole-CH₂OBpin), 22.6 (EtOBpin).

¹H NMR (500 MHz, C₆D₆, 298 K): δ 7.33 (d, 2H, J = 10.0 Hz, PhC*H*), 7.13 (t, 2H, J = 7.5 Hz, PhC*H*), 7.07 (d, 1H, J = 10.0 Hz, PhC*H*), 5.18 (s, 1H, C*H*), 4.97 (s, 2H, C*H*₂), 4.83 (s, 1H, C*H*), 4.35 (s, 2H, C*H*₂), 1.56 (s, 3H, C*H*₃). ¹³C NMR (125 MHz, C₆D₆, 298 K): δ 143.3, 140.0, 128.6, 127.6, 127.3, 110.1, 82.7, 82.6, 68.4, 66.9, 24.7, 19.0. The methyl peaks of -OBpin in ¹H NMR are overlapping in the region 0.99-1.05 ppm. ¹¹B NMR (160 MHz, C₆D₆, 298 K): δ 22.7 (PhCH₂O*B*pin/H₂C=CHMeCH₂O*B*pin).

¹H NMR (500 MHz, C₆D₆, 298 K): δ 7.19 (d, 2H, J = 10.0 Hz, PhC*H*), 7.00-7.10 (t, J = 7.5 Hz, 2H, PhC*H*), 7.00-7.03 (m, 1H, PhC*H*), 6.64 (d, 1H, J = 15.0 Hz, C*H*), 6.15-6.21 (m, 1H, C*H*), 4.56 (d, 2H, J = 5.0 Hz, C*H*₂). ¹³C NMR (125 MHz, C₆D₆, 298 K): δ 137.3, 130.9, 128.8, 127.7, 127.5, 126.8, 82.7, 82.5, 65.5, 52.4, 24.7. The methyl peaks of -OBpin in ¹H NMR are overlapping in the region 0.99-1.06 ppm. ¹¹B NMR (160 MHz, C₆D₆, 298 K): δ 22.7 (PhC₃H₄OBpin/MeOBpin).

mesitylene)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 - Figure S17. ¹³C NMR spectrum (125 MHz, C_6D_6) of PhCH₂OBpin/MeOBpin (\blacklozenge represents

mesitylene).

Figure S18. ¹¹B NMR spectrum (128 MHz, C_6D_6) of PhCH₂OBpin/MeOBpin (\bigstar indicates excess HBpin).

Figure S19. ¹H NMR spectrum (500 MHz, C₆D₆) of PhCH₂OBpin/EtOBpin (\blacklozenge represents

Figure S20. ¹³C NMR spectrum (125 MHz, C₆D₆) of PhCH₂OBpin/EtOBpin (♦ represents mesitylene)

Figure S21. ¹¹B NMR spectrum (128 MHz, C_6D_6) of PhCH₂OBpin/EtOBpin (\bigstar represents HBpin).

Figure S22. ¹H NMR spectrum (500 MHz, C_6D_6) of NH₂PhCH₂OBpin/EtOBpin (\blacklozenge represents mesitylene)

Figure S23. ¹³C NMR spectrum (125 MHz, C₆D₆) of NH₂PhCH₂OBpin/EtOBpin (\blacklozenge represents mesitylene).

H₂N

Figure S24. ¹¹B NMR spectrum (128 MHz, C_6D_6) of NH₂PhCH₂OBpin/EtOBpin (\bigstar represents HBpin).

Figure S25. ¹H NMR spectrum (500 MHz, C₆D₆) of CH₃OPhCH₂OBpin/MeOBpin (\blacklozenge represents mesitylene)

Figure S26. ¹³C NMR spectrum (125 MHz, C₆D₆) of CH₃OPhCH₂OBpin/MeOBpin (\blacklozenge represents mesitylene)

Figure S27. ¹¹B NMR spectrum (128 MHz, C_6D_6) of CH₃OPhCH₂OBpin/MeOBpin (\bigstar represents HBpin).

Figure S28. ¹H NMR spectrum (500 MHz, C_6D_6) of ClPhCH₂OBpin/MeOBpin (\blacklozenge represents mesitylene).

Figure S29. ¹³C NMR spectrum (125 MHz, C_6D_6) of ClPhCH₂OBpin/MeOBpin (\blacklozenge represents mesitylene).

Figure S30. ¹¹B NMR spectrum (128 MHz, C_6D_6) of ClPhCH₂OBpin/MeOBpin (\bigstar represents HBpin).

Figure S31. ¹H NMR spectrum (500 MHz, C₆D₆) of CF₃PhCH₂OBpin/MeOBpin (\blacklozenge represents

¹⁴⁵ ¹³⁵ ¹²⁵ ¹¹⁵ ¹⁰⁵ ⁹⁵ ⁹⁰ ⁸⁵ ⁸⁰ ⁷⁵ ⁷⁰ ⁶⁵ ⁶⁰ ⁵⁵ ⁵⁰ ⁴⁵ ⁴⁰ ³⁵ ³⁰ ²⁵ ²⁰ ¹⁵ ¹⁰ ⁵ ⁶ ^{Figure S32. ¹³C NMR spectrum (125 MHz, C_6D_6) of $CF_3PhCH_2OBpin/MeOBpin$ (\blacklozenge represents mesitylene)}

Figure S33. ¹¹B NMR spectrum (128 MHz, C_6D_6) of CF₃PhCH₂OBpin/MeOBpin (\bigstar represents HBpin).

Figure S34. ¹H NMR spectrum (500 MHz, C₆D₆) of CH₃PhCH₂OBpin/MeOBpin. (\blacklozenge represents mesitylene)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 Figure S35. ¹³C NMR spectrum (125 MHz, C_6D_6) of $CH_3PhCH_2OBpin/MeOBpin$. (\blacklozenge represents mesitylene).

Figure S36. ¹¹B NMR spectrum (128 MHz, C_6D_6) of CH₃PhCH₂OBpin/MeOBpin (\bigstar represents HBpin).

Figure S37. ¹H NMR spectrum (500 MHz, C₆D₆) of CH₃PhCH₂OBpin/EtOBpin (\blacklozenge represents

mesitylene)

Figure S38. ¹³C NMR spectrum (125 MHz, C₆D₆) of CH₃PhCH₂OBpin/EtOBpin (\blacklozenge represents mesitylene)

29.028

Figure S39. ¹¹B NMR spectrum (128 MHz, C_6D_6) of CH₃PhCH₂OBpin/MeOBpin (\bigstar represents HBpin).

Figure S40. ¹H NMR spectrum (500 MHz, C₆D₆) of NO₂PhCH₂OBpin/EtOBpin (\blacklozenge represents mesitylene)

Figure S41. ¹³C NMR spectrum (125 MHz, C_6D_6) of NO₂PhCH₂OBpin/EtOBpin. (\blacklozenge represents mesitylene).

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90

Figure S42. ¹¹B NMR spectrum (128 MHz, C_6D_6) of NO₂PhCH₂OBpin/EtOBpin (\bigstar represents HBpin).

Figure S43. ¹H NMR spectrum (500 MHz, C₆D₆) of FPhCH₂OBpin/MeOBpin (\blacklozenge represents mesitylene)

Figure S44. ¹³C NMR spectrum (125 MHz, C_6D_6) of FPhCH₂OBpin/MeOBpin (\blacklozenge represents mesitylene).

Figure S45. ¹¹B NMR spectrum (128 MHz, C_6D_6) of FPhCH₂OBpin/MeOBpin (\bigstar represents HBpin).

Figure S46. ¹H NMR spectrum (500 MHz, C₆D₆) of BrPhCH₂OBpin/MeOBpin (♦ represents mesitylene)

mesitylene).

Figure S48. ¹¹B NMR spectrum (128 MHz, C_6D_6) of BrPhCH₂OBpin/MeOBpin (\bigstar represents HBpin).

Figure S49. ¹H NMR spectrum (500 MHz, C₆D₆) of 2-furan-CH₂OBpin/MeOBpin (♦ represents mesitylene)

Figure S50. ¹³C NMR spectrum (125 MHz, C_6D_6) of 2-furan-CH₂OBpin/MeOBpin (\blacklozenge represents mesitylene).

90

70

80

60

50

40

30

20

0

-10

-20

-30

-40

-50

-60

-70

-80

-90

Figure S51. ¹¹B NMR spectrum (128 MHz, C_6D_6) of 2-furan-CH₂OBpin/MeOBpin (\bigstar represents HBpin).

10

Figure S52. ¹H NMR spectrum (500 MHz, C₆D₆) of BpinO(CH₂)₃CMeOBpin (♦ represents mesitylene)

²²⁰ ²¹⁰ ²⁰⁰ ¹⁹⁰ ¹⁸⁰ ¹⁷⁰ ¹⁶⁰ ¹⁵⁰ ¹⁴⁰ ¹³⁰ ¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ⁰ ⁻¹⁰ ⁻¹⁰ **Figure S53**. ¹³C NMR spectrum (125 MHz, C_6D_6) of BpinO(CH₂)₃CMeOBpin (\blacklozenge represents mesitylene).

Figure S54. ¹¹B NMR spectrum (128 MHz, C_6D_6) of pinBO(CH₂)₃CMeOBpin (\bigstar represents HBpin).

Figure S55. ¹H NMR spectrum (500 MHz, C₆D₆) of CyCH₂OBpin/MeOBpin (♦ represents

²²⁰ ²¹⁰ ²⁰⁰ ¹⁹⁰ ¹⁸⁰ ¹⁷⁰ ¹⁶⁰ ¹⁵⁰ ¹⁴⁰ ¹³⁰ ¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ⁰ ⁻¹⁰ ⁻¹⁰ **Figure S56**. ¹³C NMR spectrum (125 MHz, C_6D_6) of CyCH₂OBpin/MeOBpin (\blacklozenge represents mesitylene).

29.048

Figure S57. ¹¹B NMR spectrum (128 MHz, C_6D_6) of pinBO(CH₂)₃CMeOBpin (\bigstar represents HBpin).

Figure S58. ¹H NMR spectrum (500 MHz, C₆D₆) of PyCH₂OBpin/MeOBpin (\blacklozenge represents mesitylene)

Figure S59. ¹³C NMR spectrum (125 MHz, C_6D_6) of PyCH₂OBpin/MeOBpin (\blacklozenge represents mesitylene).

Figure S60. ¹¹B NMR spectrum (128 MHz, C_6D_6) of PyCH₂OBpin/MeOBpin (\bigstar represents HBpin).

Figure S61. ¹H NMR spectrum (500 MHz, C₆D₆) of PyCH₂OBpin/MeOBpin (\blacklozenge represents mesitylene)

Figure S62. ¹³C NMR spectrum (125 MHz, C_6D_6) of PyCH₂OBpin/MeOBpin (\blacklozenge represents mesitylene).

Figure S63. ¹¹B NMR spectrum (128 MHz, C_6D_6) of PyCH₂OBpin/MeOBpin (\bigstar represents HBpin).

Figure S64. ¹H NMR spectrum (500 MHz, C₆D₆) of pinBOCH₂CMeOBpin (♦ represents mesitylene)

Figure S65. ¹³C NMR spectrum (125 MHz, C_6D_6) of pinBOCH₂CMeOBpin (\blacklozenge represents mesitylene).

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90

Figure S66. ¹¹B NMR spectrum (128 MHz, C_6D_6) of pinBOCH₂CMeOBpin (\bigstar represents HBpin).

Figure S67. ¹H NMR spectrum (500 MHz, C₆D₆) of pinBOC₆H₁₂OBpin (♦ represents mesitylene)

Figure S68. ¹³C NMR spectrum (125 MHz, C_6D_6) of pinBOC₆H₁₂OBpin (\blacklozenge represents mesitylene).

Figure S69. ¹¹B NMR spectrum (128 MHz, C₆D₆) of pinBOC₆H₁₂OBpin (★ represents HBpin).

Figure S71. ¹³C NMR spectrum (125 MHz, C₆D₆) of EtOBpin (♦ represents mesitylene)

~29.004 ~27.921 ~22.522

Figure S73. ¹H NMR spectrum (500 MHz, C₆D₆) of EtOBpin/¹BuOBpin (\blacklozenge represents mesitylene)

Figure S74. ¹³C NMR spectrum (125 MHz, C_6D_6) of EtOBpin/^tBuOBpin (\blacklozenge represents mesitylene).

Figure S75. ¹¹B NMR spectrum (128 MHz, C₆D₆) of EtOBpin/^tBuOBpin (★ represents HBpin).

Figure S76. ¹H NMR spectrum (500 MHz, C₆D₆) of C₈H₁₇OBpin/MeOBpin (♦ represents mesitylene)

Figure S77. ¹³C NMR spectrum (125 MHz, C_6D_6) of $C_8H_{17}OBpin/MeOBpin$ (\blacklozenge represents mesitylene).

-29.103 \27.748 -22.630

100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90

Figure S78. ¹¹B NMR spectrum (128 MHz, C_6D_6) of $C_8H_{17}OBpin/MeOBpin$ (\bigstar represents HBpin).

Figure S79. ¹H NMR spectrum (500 MHz, C₆D₆) of pinBOPhCH₂CH₂OBpin (\blacklozenge represents mesitylene)

Figure S80. ¹³C NMR spectrum (125 MHz, C_6D_6) of pinBOPhCH₂CH₂OBpin (\blacklozenge represents mesitylene).

Figure S81. ¹¹B NMR spectrum (128 MHz, C_6D_6) of pinBOPhCH₂CH₂OBpin (\bigstar represents HBpin).

Figure S82. ¹H NMR spectrum (500 MHz, C₆D₆) of naphthyl-CH₂OBpin/MeOBpin (\blacklozenge represents mesitylene)

Figure S83. ¹³C NMR spectrum (125 MHz, C₆D₆) of naphthyl-CH₂OBpin/MeOBpin (represents mesitylene).

Figure S84. ¹¹B NMR spectrum (128 MHz, C_6D_6) of naphthyl-CH₂OBpin/MeOBpin (\bigstar represents HBpin).

Figure S85. ¹H NMR spectrum (500 MHz, C₆D₆) of PhCH₂OBpin (♦ represents mesitylene)

Figure S87. ¹¹B NMR spectrum (128 MHz, C₆D₆) of PhCH₂OBpin (★ represents HBpin).

Figure S88. ¹H NMR spectrum (500 MHz, C₆D₆) of PhOBpin/EtOBpin (♦ represents mesitylene)

Figure S89. ¹³C NMR spectrum (125 MHz, C_6D_6) of PhOBpin/EtOBpin (\blacklozenge represents mesitylene).

Figure S91. ¹H NMR spectrum (500 MHz, C_6D_6) of 2-thienyl-CH₂OBpin/MeOBpin (\blacklozenge represents mesitylene).

90

80

70

60

0

-10

-30

-40

-50

-60

-70

-80

-90

Figure S93. ¹¹B NMR spectrum (128 MHz, C₆D₆) of 2-thienyl-CH₂OBpin/MeOBpin (★ represents HBpin).

Figure S94. ¹H NMR spectrum (500 MHz, C_6D_6) of 3-thienyl-CH₂OBpin/EtOBpin (\blacklozenge represents mesitylene).

Figure S95. ¹³C NMR spectrum (125 MHz, C_6D_6) of 3-thienyl-CH₂OBpin/EtOBpin. (\blacklozenge represents mesitylene).

Figure S97. ¹H NMR spectrum (500 MHz, C₆D₆) of HCCCH₂OBpin/MeOBpin (\blacklozenge represents mesitylene).

220 210 200 190 180 170 160 150 140 130 120 110 100 -10 90 80 60 50 40 30 10 70 20 0 Figure S98. ¹³C NMR spectrum (125 MHz, C₆D₆) of HCCCH₂OBpin/MeOBpin (\blacklozenge represents mesitylene).

90

80

70

60

0

-10

-20

-30

-40

-50

-60

-70

-80

-90

Figure S99. ¹¹B NMR spectrum (128 MHz, C₆D₆) of HCCCH₂OBpin/MeOBpin (★ represents HBpin).

Figure S100. ¹H NMR spectrum (500 MHz, C_6D_6) of (pinB)₂NCH₂C₆H₄CH₂OBpin/EtOBpin (\blacklozenge represents mesitylene)

²²⁰ 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 **Figure S101**. ¹³C NMR spectrum (125 MHz, C_6D_6) of (pinB)₂NCH₂C₆H₄CH₂OBpin/EtOBpin (\blacklozenge represents mesitylene).

Figure S102. ¹¹B NMR spectrum (128 MHz, C_6D_6) of (pinB)₂NCH₂C₆H₄CH₂OBpin/EtOBpin (\bigstar represents HBpin).

Figure S103. ¹H NMR spectrum (500 MHz, C₆D₆) of 2-indolyl-CH₂OBpin/EtOBpin. (

represents mesitylene).

Figure S104. ¹³C NMR spectrum (125 MHz, C_6D_6) of 2-indolyl-CH₂OBpin/EtOBpin. (\blacklozenge represents mesitylene).

Figure S105. ¹¹B NMR spectrum (128 MHz, C_6D_6) of 2-indolyl-CH₂OBpin/EtOBpin. (\bigstar represents HBpin).

Figure S106. ¹H NMR spectrum (500 MHz, C₆D₆) of CH=CMeCH₂OBpin/PhCH₂OBpin (♦ represents mesitylene)

represents mesitylene).

Figure S109. ¹H NMR spectrum (500 MHz, C_6D_6) of PhC=CHCH₂OBpin/MeOBpin (\blacklozenge represents mesitylene)

represents mesitylene).

Figure S201. ¹¹B NMR spectrum (128 MHz, C_6D_6) of PhC=CHCH₂OBpin/MeOBpin (\star represents HBpin).

Figure S202. ¹H NMR stack spectra plot of stoichiometric reaction in C₆D₆. (a) 4-MeOPhCOOMe, (b) 1a + 4-MeOPhCOOMe (1:3), (c) 4-MeOPhCOOMe + 1a + HBpin (1:3:3), (d) 4-MeOPhCOOMe + 1a + HBpin (1:3:3 at 80 °C for 2.0 h), (e) 4-MeOPhCOOMe + 1a + HBpin (1:3:3 at 80 °C for 3.5 h, \bigstar = 4-MeOPhCH₂OBpin/CH₃OBpin), \blacklozenge = [(CH₃)₃Si]₂N-Bpin).

Figure S203. ¹H NMR spectrum (500 MHz, C_6D_6) of complex 1a with HBpin (I: 1a + 6 HBpin at 80 °C for 1.5 h; II: 4 h, III: 20 h.

28	20	29
0	6	9
0	5	2
4	4	(1
1	1	

Figure S204. ¹¹B NMR spectrum (128 MHz, C_6D_6) of complex 1a with HBpin (1:6) at 80 °C for 20 h.