ZIF-8-derived carbon modified g-C₃N₄ heterostructure with enhanced photocatalytic activity for dye degradation and hydrogen production

Xin Chang¹, Ye Wang¹, Xuejiao Zhang^{*, 1} Yi Song³ and Mingyi Zhang ^{*,1,2}

1 Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, People's Republic of China.

2 School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 45001, PR China

3 Institute of Data Science and Arti cial Intelligenc, Harbin Huade University, Harbin 150025, PR China

*Corresponding author:

Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, P. R. China.

E-mail: zhangmingyi@hrbnu.edu.cn (M.Y. Zhang)

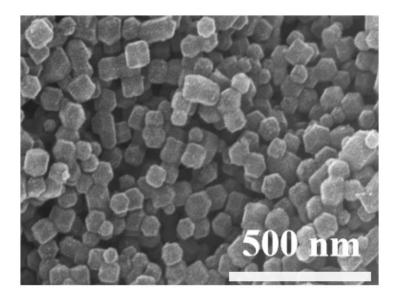


Fig. S1. SEM image of the sample obtained by heating the ZIF-8 at 900

°C under Ar gas flow.

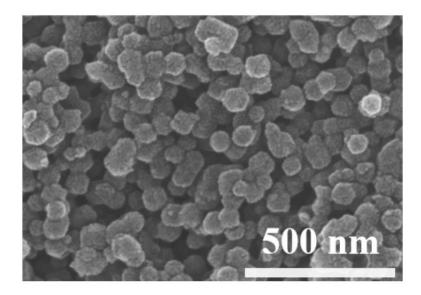


Fig. S2. SEM image of C-ZIF.

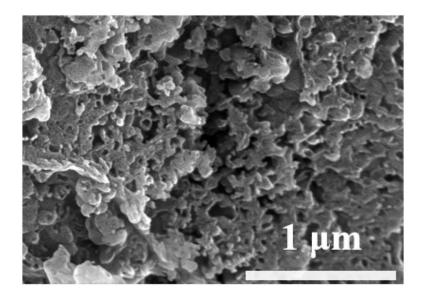


Fig. S3. SEM image of 10-C-ZIF+g-C₃N_{4.}

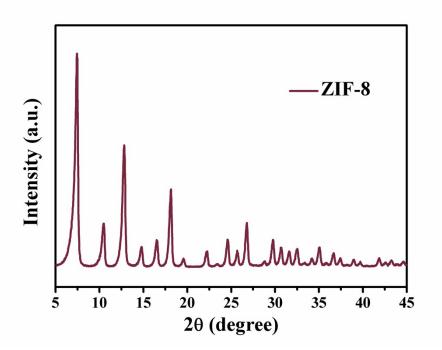


Fig. S4. XRD pattern of as-synthesized ZIF-8

Samples	C-ZIF Contents	Element Contents		BET S.A.
		С	Ν	
	(Wt.%) ^a	(At.%)b		(m ² .g ⁻¹) ^c
g-C ₃ N ₄		42.25	57.75	15.916
5-C-ZIF@g-C ₃ N ₄	5.9	47.91	52.09	13.982
10-C-ZIF@g-C ₃ N ₄	9.7	49.72	50.28	15.735
10-C-ZIF+g-C ₃ N ₄	9.7	50.66	49.34	10.181
20-C-ZIF@g-C ₃ N ₄	15.7	53.62	46.28	13.441
30-C-ZIF@g-C ₃ N ₄	22.7	60.53	39.47	15.803
C-ZIF		84.70	15.30	983.723

Table S1. TG, EDX data and BET surface areas of $g-C_3N_4$, $10-C-ZIF+g-C_3N_4$ and $C-ZIF@g-C_3N_4$ composites with different C-ZIF contents.

[a] The value was determined by EDX.

[b] The contents of C-ZIF in the final prepared samples were obtained by TG.

[c] The specific surface area of samples was confirmed by BET.