SI

 Table S1. Pertinent bond lengths (Å) and angles (°) for 3.

Mn1	Mn2	Mn3	Mn4	Mn5
Mn1-O1 1.928(6)	Mn2-05 1.925(5)	Mn3-08 2.104(4)	Mn4-O4 2.424(7)	Mn5-06 2.272(4)
Mn1-O2 1.910(5)	Mn2-O6 1.912(4)	Mn3-011 2.11(1)	Mn4-05 2.114(4)	Mn5-07' 2.272(4)
Mn1-O3 1.925(6)	Mn2-07 1.924(5)	Mn3-013 2.213(6)	Mn4-012 2.16(1)	Mn5-014 1.997(5)
Mn1-O4 1.943(5)	Mn2-08 1.934(4)	Mn3-015 2.199(8)	Mn4-013 2.214(5)	Mn5-O14' 1.997(5)
Mn1-013 2.139(6)	Mn2-014 2.101(4)	Mn3-016 2.220(6)	Mn4-017 2.262(6)	Mn5-016 2.320(5)
	Mn2-N3 2.336(8)	Mn3-01 2.577(7)	Mn4-018 2.219(8)	Mn5-017 2.290(6)

Mn1	Mn2	Mn3	Mn4	Mn5
Mn1-O4-Mn4	Mn2-O8-Mn3	Mn3-013-Mn1	Mn4-O5-Mn2	Mn5-O6-Mn2
98.8(2)	113.5(2)	102.3(2)	118.6(2)	97.3(2)
Mn1-013-Mn4	Mn2-05-Mn4	Mn3-013-Mn4	Mn4-O4-Mn1	Mn5-07'-Mn2'
99.8(2)	118.6(2)	128.4(3)	98.8(2)	97.6(2)
Mn1-013-Mn3	Mn2-014-Mn5	Mn3-O8-Mn2	Mn4-013-Mn1	Mn5-014-Mn2
102.3(2)	100.6(2)	113.5(2)	99.8(2)	100.6(2)
Mn1-01-Mn3	Mn2-014-Mn5'	Mn3-016-Mn5'	Mn4-013-Mn3	Mn5-014'-Mn2'
96.6(2)	101.1(2)	104.0(2)	128.4(3)	101.1(2)
	Mn2-06-Mn5	Mn3-O1-Mn1	Mn4-017-Mn5	Mn5-014-Mn5'
	97.3(2)	96.6(2)	107.5(2)	97.7(2)
	Mn2-07-Mn5'			Mn5-014'-Mn5'
	97.6(2)			97.7(2)
				Mn5-016'-Mn3'
				104.0(2)
				Mn5-017-Mn3
				107.5(2)

Table S2. Bond valence sums for Mn1 – Mn5.

metal VBS	d(M-L1)	d(M-L2)	d(M-L3)	d(M-L4)	d(M-L5)	r(0)	beta
Mn1	2.139	1.943	1.925	1.91	1.928	1.76	0.37
M(Ox.State)	2.91083						

metal VBS	d(M-L1)	d(M-L2)	d(M-L3)	d(M-L4)	d(M-L5)	d(M-L6)	r(0)	beta
Mn2	2.336	2.101	1.952	1.934	1.924	1.912	1.76	0.37
M(Ox.State)	3.133752							

metal VBS	d(M-L1)	d(M-L2)	d(M-L3)	d(M-L4)	d(M-L5)	d(M-L6)	r(0)	beta
Mn3	2.104	2.199	2.213	2.22	2.114	2.557	1.79	0.37
M(Ox.State)	1.933054							

metal VBS	d(M-L1)	d(M-L2)	d(M-L3)	d(M-L4)	d(M-L5)	d(M-L6)	r(0)	beta
Mn4	2.424	2.262	2.114	2.219	2.214	2.155	1.79	0.37
M(Ox.State)	1.880517							

metal VBS	d(M-L1)	d(M-L2)	d(M-L3)	d(M-L4)	d(M-L5)	d(M-L6)	r(0)	beta
Mn5	2.272	2.272	2.29	1.992	1.997	2.32	1.79	0.37
M(Ox.State)	2.192022							

Figure S1. A histogram showing the variation in Mn-O bond lengths in the CSD. The purple bar denotes the range where the Mn3…O1 distance in complex **3** lies.

Figure S2. Extended structure of **3** shown along the *a*-axis. The ^{*t*}Bu groups of the L ligands, H-atoms, co-crystallised and some ligated solvent are omitted for clarity. Colour code C – grey, O – red, N – dark blue, Mn^{II} – pale blue, Mn^{III} – purple.

Figure S3. Variable-temperature-variable-field (VTVB) magnetisation data of **3** at T = 2-7 K and B = 0-7 T.

Computational details

DFT calculations were performed on the full crystal structures of complexes **3** and **4**. The energies of each spin configuration were computed using a hybrid UB3LYP functional with the TZV basis set¹ as implemented in Gaussian 16 software. The exchange interactions were estimated using the broken symmetry approach,² which has been shown to yield good numerical estimates of *J* values in polymetallic systems³ based on the extended pair-wise interaction model, proposed by Ruiz and co-workers.⁴ This methodology has been proven to yield very good numerical estimates of exchange interactions for Mn clusters possessing weak ferro/antiferromagnetic coupling.⁵ Indeed, there are instances where these calculations were employed to detect errors in experimental susceptibility data due to sample decay.⁶ The chosen spin configurations for our calculations are given in Figures S6-S8, along with their corresponding computed spin density plots. The spin-Hamiltonian below was used to estimate the exchange interactions. We have also estimated these using Yamaguchi's spin-projection formula⁷ for the model complex, which yielded very similar results (Figure S5).

 $\mathsf{E}_{\mathsf{HS}} = -J_1[\hat{S}_1 \cdot \hat{S}_2] - J_2[\hat{S}_1 \cdot \hat{S}_3 + \hat{S}_1 \cdot \hat{S}_4 + \hat{S}_2 \cdot \hat{S}_5 + \hat{S}_2 \cdot \hat{S}_6] - J_3[\hat{S}_3 \cdot \hat{S}_5 + \hat{S}_4 \cdot \hat{S}_6] - J_4[\hat{S}_3 \cdot \hat{S}_9 + \hat{S}_5 \cdot \hat{S}_9 + \hat{S}_4 \cdot \hat{S}_{10} + \hat{S}_6 \cdot \hat{S}_{10}]$

 $-J_{5}[\hat{S}_{1}\cdot\hat{S}_{7}+\hat{S}_{1}\cdot\hat{S}_{8}+\hat{S}_{2}\cdot\hat{S}_{7}+\hat{S}_{2}\cdot\hat{S}_{8}]-J_{6}[\hat{S}_{3}\cdot\hat{S}_{7}+\hat{S}_{4}\cdot\hat{S}_{8}+\hat{S}_{5}\cdot\hat{S}_{7}+\hat{S}_{6}\cdot\hat{S}_{8}]$

Figure S4. Depiction of the ground state of the complex **3** based on the DFT calculated exchange coupling constants, J_{1-6} .

Figure S5. Dimeric model complex taken from the X-ray structure employed to verify the magnitude of J_1 in complex **4**. The exchange interaction obtained in dimeric model is J = -92 cm⁻¹. We have verified the J value using the Yamaguchi model, which computes J = -115 cm⁻¹.

Figure S6. Computed spin densities for the high spin state of **3** (a) and **4** (b) with a cut-off value of 0.0006 a.u. The blue colour represents positive spin density and the red colour negative spin density.

Figure S7. Computed spin density plot for all broken symmetries of complex **3** with a cut-off value of 0.0006 a.u. The blue colour represents positive spin density and the red colour negative spin density.

Figure S8. Computed spin density plot for all broken symmetries of complex **4** with a cut-off value of 0.0006 a.u. The blue colour represents positive spin density and the red colour negative spin density.

References

- 1. A. Schäfer, H. Horn and R. Ahlrichs, *J. Chem. Phys.*, 1992, **97**, 2571; (b) A. Schäfer, C. Huber and R. Ahlrichs, *J. Chem. Phys.*, 1994, **100**, 5829.
- 2. L. Noodleman, J. Chem. Phys., 1981, 74, 5737-5743.
- G. Rajaraman, J. Cano, E. K. Brechin and E. J. L. McInnes, *Chem. Commun.*, 2004, 1476–1477; P. Christian, G. Rajaraman, A. Harrison, J. J. W. McDouall, R. E. P. Winpenny, Dalton Trans., 2004, 1511–1512; K. R. Vignesh, S. K. Langley, K. S. Murray and G. Rajaraman, *Chem. Eur. J.*, 2015, **21**, 2881–2892; P. Christian, G. Rajaraman, A. Harrison, M. Helliwell, J. J. W. McDouall, J. Raftery and R. E. P. Winpenny, *Dalton Trans.*, 2004, 2550–2555.
- 4. E. Ruiz, A. Rodríguez-Fortea, J. Cano, S. Alvarez and P. Alemany, *J. Comput. Chem.*, 2003, **24**, 982-989.
- a) W. P. Barros, R. Inglis, G. S. Nichol, T. Rajeshkumar, G. Rajaraman, S. Piligkos, H. O. Stumpf and E. K. Brechin, *Dalton Trans.*, 2013, 42, 16510-16517; b) K. R. Vignesh, S. K. Langley, C. J. Gartshore, I. Borilović, C. M. Forsyth, G. Rajaraman and K. S. Murray, *Dalton Trans.*, 2018, 47, 11820–11833; c) K. R. Vignesh, S. K. Langley, C. J. Gartshore, B. Moubaraki, K. S. Murray and G. Rajaraman, *Inorg. Chem.*, 2017, 56, 1932-1949; d) E. Cremades, J. Cano, E. Ruiz, G. Rajaraman, C. J. Milios and E. K. Brechin., *Inorg. Chem.*, 2009, 48, 8012-8019; e) C. J. Milios, M. Manoli, G. Rajaraman, A. Mishra, L. E. Budd, F. White, S. Parsons, W. Wernsdorfer, G. Christou and E. K. Brechin., *Inorg. Chem.*, 2006, 45, 6782-6793.
- K. R. Vignesh, S. K. Langley, K. S. Murray and G. Rajaraman., *Chem. Eur. J.*, 2015, **21**, 2881-2892.
- 7. T. Onishi, Y. Takano, Y. Kitagawa, T. Kawakami, Y. Yoshioka and K. Yamaguchi, *Polyhedron*, 2001, **20**, 1177.