Supporting Information

Three-dimension Cross-linked Co-MoS₂ Catalyst on Carbon

Cloth for Efficient Hydrogen Evolution Reaction

Yan Xiao, Jing Yao, Tianze Zhang, Xinzhi Ma, Dexin Xu, and Hong Gao*.

School of Physics and Electronic Engineering, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, People's Republic of China

*Corresponding author. *E-mail address: gaohong65cn@126.com* **Chemicals.** Thiourea (CH₄N₂S, Aladdin Chemistry Co., Ltd, AR), cobalt nitrate hexahydrate (Co(NO₃)₂·6H₂O, Shanghai Macklin Biochemical Technology Co., Ltd, AR), urea (CH₄N₂O, Aladdin Chemistry Co., Ltd, AR), ammonium molybdate tetrahydrate ((NH₄)₆Mo₇O₂₄·4H₂O, Aladdin Chemistry Co., Ltd, ACS) and potassium hydroxide (KOH, Shanghai Macklin Biochemical Technology Co., Ltd, AR) were used directly without any further purification. The first-grade deionized (DI) water used in all experiments.

Synthesis of MoS_2/CC . For comparative studies, pure MoS_2 was synthesized to attain insights into the relationship between architecture and catalytic activity. Except without adding CoCH precursor, pure MoS_2 was prepared using a process similar to Co-MoS₂-4/CC.

Figure S1. (a-c) High magnificent SEM images of CoCH-1/CC, CoCH-

4/CC, and CoCH-8/CC, respectively.

Figure S2. (a-b) Low and high magnificent SEM images of bare MoS₂.

Figure S3. (a-c) EDS data of Co-MoS₂-1, Co-MoS₂-4, and Co-MoS₂-8, respectively; insets show the corresponding stoichiometric ratios of S, Mo, and Co.

Figure S4. XRD patterns of the 3DSC Co-MoS₂-4/CC nanostructure

synthesized at different reduction temperatures.

Figure S5. X-ray photoelectron spectroscopy (XPS) results of MoS₂/CC: (a) survey, (b) Mo 3d, and (c) S 2p regions.

Figure S6. Comparison of HER activities of samples synthesized at changing annealing temperatures in 1 M KOH electrolyte. (a) The HER polarization curves and (b) Tafel plots for a series of Co-MoS₂-200/CC, Co-MoS₂-350/CC, and Co-MoS₂-500/CC electrocatalysts in 1 M KOH electrolyte. (c) Plots of $\Delta j/2$ versus scan rates. (d) Nyquist plots at an overpotential of 200 mV for electrodes.

Figure S7. (a) Double layer capacitance estimated from the linear slope between Δj (= $j_a - j_c$) and scan rates. (b-f) CV curves at different scan rates for all synthesized catalysts.

Figure S8. The final catalytic activity of a series of $Co-MoS_2/CC$ electrodes after excluding the electrochemical surface area effects. Electrolyte: 1M KOH.

Figure S9. Potential-dependent TOF values of a series of $Co-MoS_2/CC$ electrodes.

Catalyst	$\eta_{10}(mV)$	Reference
Co-MoS ₂ -4/CC	40	This Work
MoS_2/Ni_2O_3H	84	Small, 2020, 16, 2002212
Co ₉ S ₈ -MoS ₂ /NF	110	Adv. Funct. Mater., 30, 2020, 2002536
Ni/M-MoS ₂	145	ChemElectroChem, 2020, 7, 3606-3615
$1T-MoS_2/CoS_2$	71	Small, 2020, 16, 2002850
MoS ₂ /CoS ₂ NTs	85	J. Mater. Chem., A, 2019, 7, 13339-13346
1T-MoS ₂ QS/Ni(OH) ₂	57	Adv. Funct. Mater., 30, 2020, 2000551
MoS ₂ /FNS/FeNi	120	Adv. Mater., 30, 2018, 1803151
Co-Ni ₃ S ₂ -MoS ₂ /CA	89	Small, 2021, 17, 2006730
Co_3O_4/MoS_2	205	Appl. Catal. B-Environ., 2019, 248, 202-210
Co ₄ S ₃ /MoC-NSC-2	82.5	Appl. Catal. B-Environ., 2020, 260, 118197
N-NiS/NiS ₂	185	Chem. Eng. J., 2020, 397, 125507
Ni_2P/Ni_3S_2	80	Nano Energy, 2018, 51, 26-36

Table S1. Comparison of HER activity of Co-MoS₂-4/CC catalyst with other reported electrocatalysts in 1 M KOH electrolyte.