Supporting Information

A study on structural, optical, and electrical characteristics of perovskite CsPbBr₃ QDs/2D-TiSe₂ nanosheets based nanocomposites for optoelectronic applications

Ashish Kumar^[a, b], Sanjay Kumar Swami^[a], Rohit Sharma^[c], Sandeep Yadav^[d], V.N. Singh^[a, b], Joerg J. Schneider^[d], O. P. Sinha^{*[c]}, Ritu Srivastava ^{*[a, b]},

^aCSIR-National Physical Laboratory, Dr. KS Krishnan Marg, New Delhi-110012, India

bAcademy of scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India

^cAmity Institute of Nanotechnology, Amity University UP, Noida, UP, India

^dTechnische Universität Darmstadt, Eduard-Zintl-Institut für Anorganische and Physikalische Chemie, Alarich-Weiss-Str.12 D-64287 Darmstadt, Germany

S1. Characterization Technique

 $CsPbBr₃ NPs$ and TiSe₂ NSs were examined by a transmission electron microscope (TEM) and High Resolution-TEM (HRTEM) of FEI Tecnai G2 F-30 STWIN operating at an accelerating voltage of 300 kV. The X-ray diffraction (XRD) pattern of perovskite NPs and $2D-TiSe₂ NSs$ was recorded using Rigaku mini Flex-600. A trapping mode atomic force microscopic (AFM) was performed by NDMDT-Solve Pro- P47 model system. The Fourier-transform infrared (FTIR) spectroscopic was recorded in transmission mode by Nicolet 5700-IR spectrometer. The field emission scanning electron microscopy (FESEM) studies was performed using Joel, JSM-7610F system. The steady-state fluorescence spectroscopy was recorded by Shimadzu 2401 PC (UV-Visible spectrometer), Fluorolog (Jobin Yvon-Horiba, model-3-11) (Photoluminescence spectrometer), and the lifetime decay was studied using time-correlated single-photon counting in Fluorolog (Jobin Yvon-Horiba, model -3-11) spectrophotometer system.

S2. HRTEM image of QDs and NSs based nanocomposite.

Figure S1: HRTEM image of the nanocomposite (QDs with NSs) structure

S3. Schematic illustration of perovskite QDs and TiSe² nanosheets

Figure S2: Schematic illustration of (a) synthesis of perovskite CsPbBr₃ QDs by hot-injection method and (b) OAm- capped exfoliation of TiSe₂ NSs under sonication.

S4. Field Emission Scanning Electron Microscopic (FESEM) micrograph of perovskite QDs and TiSe² NSs.

Figure S3. Purified (a) perovskite CsPbBr₃ QDs, magnifying view at 40000X, and (b) functionalized (F)-TiSe₂ NSs, magnifying view at 90000X.

S5. Atomic force microscopy (AFM)

The AFM micrograph of drop-casted TiSe₂ nanosheets on a $SiO₂$ substrate is shown in figure S4 (a), and the phase-contrast image is shown in Figure S4 (b). AFM studies revealed nanosheets' formation and thickness in the range of 8 to 23 nm (from different spots). It was predicted by its height profile, as shown in Figure S4 (c). The phase-contrast image of $TiSe₂$ NSs confirms the formation of NSs.

Figure S4. (a) AFM image of functionalized-TiSe₂ NSs, (b) phase-contrast image, and (c) height profile of functionalized NSs at different spots.

Table S1. The calculated charge transfer rate constant (KET) for the nanocomposite.

Nanocomposite	τ_{avg} (ns)	K_{ET} (10 ⁸ s ⁻¹)
$CsPbBr_3 + 5 \mu g/mL$ TiSe ₂	4.51	
$CsPbBr_3 + 10 \mu g/mL$ TiSe ₂	2.73	2.95
$CsPbBr_3 + 20 \mu g/mL$ TiSe ₂	2.85	2.79

S6. Cyclic voltammetry of TiSe² NSs.

The cyclic voltammetry analysis was performed to evaluate the valence band maximum (VBM) level of TiSe₂ NSs (figure S5). The calculation of VBM of TiSe₂ NSs was done by the onset oxidation potential (E_{oxi}) (shown in figure S5).^[1, 2]

$$
E_{VBM} = (E_{oxi} - E_{1/2} \text{(ferrocence)} + 4.8) \text{ eV} \tag{1}
$$

Where, $E_{1/2}$ (ferrocene) and E_{oxi} value was obtained 0.1 eV and 0.42 eV. The VBM level value is \sim 5.1 eV calculated by using equation (I).

Figure S5. Cyclic voltammogram of TiSe₂ NSs.

S7. Transient photocurrent (I-t) response of pristine and nanocomposite.

The I-t characteristics of pristine and nanocomposite sample shows good repeatability and stability for many on/off cycles (figure S6). The response time is 1.67s, 1.18s, and 1.19s for pristine, CsPbBr₃ + 5 μ g/mL TiSe₂ and CsPbBr₃ + 10 μ g/mL TiSe₂ sample respectively, and it can be seen that the response time decreases upon change in the concentration of $TiSe₂ NSs$.

Figure S6. (a) Transient photocurrent of pristine QDs, nanocomposite (QDs with 5 µg/mL TiSe₂) and nanocomposite (QDs with 10 μ g/mL TiSe₂), and (b, c & d) single normalized cycle of the photocurrent of pristine QDs, nanocomposite QDs with 5 μ g/mL TiSe₂) and nanocomposite (QDs with 10 μ g/mL TiSe₂),

References

- 1. Alhalasah, W. and Holze, R., 2007. Electrochemical bandgaps of a series of poly-3-pphenylthiophenes. Journal of Solid State Electrochemistry, 11(12), pp.1605-1612.
- 2. Pandey, S., Kumar, A., Karakoti, M., Garg, K.K., Rana, A., Tatrari, G., Bohra, B.S., Yadav, P.K., Singh, R.K. and Sahoo, N.G., 2021. 3D Graphene Nanosheets from Plastic Waste for Highly Efficient HTM free Perovskite Solar Cells. Nanoscale Advances.