Supporting Information

Fe-triazole coordination compound-derived Fe₂O₃ nanoparticles anchored on Fe-MOF/N-doped carbon nanosheets for efficient electrocatalytic oxygen evolution reaction Xing Liu and Yun Gong* Department of Applied Chemistry, College of Chemistry and Chemical Engineering,

Chongqing University, Chongqing 401331, P. R. China. E-mail: gongyun7211@cqu.edu.cn; Tel:+86 023 65678932

(b)

(c)

Fig. S1 (a) XRD pattern of Fe-CC and the simulated profile of $[Ru^{III}Cl_3(Htrz)_3] \cdot H_2O$; (b) The structure of $[Fe^{III}Cl_3(Htrz)_3] \cdot H_2O$; (c) TG curve of Fe-CC; (d) XRD of Fe₂O₃/NC/Fe-MOF, Fe₂O₃/NC, the standard profile of Fe₂O₃ and the simulated one of $[Fe^{II}Cl_2(Htrz)]$.

Syntheses of Fe₂O₃/NC/Fe-MOF and Fe₂O₃/NC

The synthesis condition of $Fe_2O_3/NC/Fe-MOF$ was similar to that of S-doped $Fe_2O_3/NC/Fe-MOF$ except in the absence of S powder (250°C, 1 h). And the synthesis condition of Fe_2O_3/NC was similar to that of FeS_2/NC except in the absence of S powder (400°C, 1 h). Their XRD patterns are seen in shown in **Fig. S1d**. As shown in **Fig. S2a**, when annealing at 250°C in the absence of S, the XRD pattern of the obtained sample meets well with those of Fe-MOF and Fe_2O_3 , while at the annealing temperature of 400 °Cwithout S, the XRD pattern of the calcined sample perfectly coincides with the standard profile of Fe_2O_3 .

As shown in **Fig. S2(b-d)** and **Fig. S2 (n-p)**, Both $Fe_2O_3/NC/Fe-MOF$ and Fe_2O_3/NC are nanoparticles. It is obvious that $Fe_2O_3/NC/Fe-MOF$ appears to be agglomerated, while Fe_2O_3/NC is in a more uniform state with higher crystallinity.)

(a)

Fig. S2 (a) XRD patterns of $Fe_2O_3/NC/Fe-MOF$, Fe_2O_3/NC , the standard profile of Fe_2O_3 and the simulated one of $[Fe^{II}Cl_2(Htrz)]$; SEM images of (b-d) $Fe_2O_3/NC/Fe-MOF$ and (e-g) Fe_2O_3/NC .

(c)

Fig. S3 EDS and elemental mappings for (a) S-doped $Fe_2O_3/NC/Fe-MOF$, (b) $FeS_2/NC/Fe-MOF$ and (c) FeS_2/NC .

Fig. S4 High-resolution XPS spectra of Cl 2p for the S-doped $Fe_2O_3/NC/Fe-MOF$, $FeS_2/NC/Fe-MOF$ and FeS_2/NC .

Fig. S5 Nitrogen adsorption/desorption curve and pore size distribution of the Sdoped Fe₂O₃/NC/Fe-MOF.

 Table S1 Performance comparison of different iron-based catalysts for oxygen

 evolution reaction.

Catalysts	Overpotential	Tafel slope	Electrolyte	Reference
	(mV) @ current	(mV dec ⁻¹)		
	density (mA cm ⁻²)			

This work	185@10	88.4	1 М КОН	
Fe ₂ O ₃ NPs@NiO NSs/GCE	221@10	53.4	4 M KOH	1
EA-Cu@Fe@Ni/CP	240@10	47	1 M KOH	2
Co ₃ O ₄ /Fe ₂ O ₃ /GCE	310@10	67	1 M KOH	3
Fe ₂ O ₃ /CNT/GCE	410@10	61	1 M KOH	4
P- Fe ₂ O ₃ -0.45/CP	270@10	72.1	1 M KOH	5
NF/NiSe@Fe ₂ O ₃ /NF	220 @10	36.9	1 M KOH	6
α-Fe ₂ O ₃ /NF	275@10	73.63	1 M KOH	7
Ni ₂ S ₃ /Fe ₂ O ₃ /NC/NF-600	220@100	64.3	1 M KOH	8
MnFeO-NF-0.4/NF	157@10	46	1 M KOH	9
Ni–Fe ₂ O ₃ /GCE	227@10	68	1 M KOH	10
Fe ₂ O ₃ @CuO NTs/CF	398@100	41.07	1 M KOH	11
SS-Fe-0.5/GCE	440@10	68	1 M KOH	12
NiCo/Fe ₃ O ₄ /MOF-74/GCE	238@10	29	1 M KOH	13
Fe ₂ O ₃ /CoO _x /CC	315@10	56	1 M KOH	14
CoS ₂ -FeS ₂ /NF	210@10	46	1 M KOH	15
Fe ₃ O ₄ /FeS ₂ -2.5/NF	253@10	48	1 M KOH	16
Fe(ox)(H ₂ O) ₂ /NF-(-1.4)-15	270@40	135	1 M KOH	17
Fe ₃ N-CN/NF	218@10	84	1 M KOH	18
Ni _{0.7} Fe _{0.3} S ₂ /NF	198@10	56	1 M KOH	19
NiFe(Co ₃) ₂ LDH/NF	228@10	37	1 M KOH	20

Fig. S6 LSV curves of bare nickel foam, Fe₂O₃/NC/Fe-MOF, Fe₂O₃/NC and S-doped Fe₂O₃/NC/Fe-MOF.

The LSV curves of Fe₂O₃/NC/Fe-MOF and Fe₂O₃/NC at 2 mV s⁻¹ are shown in **Fig. S6**. To achieve 10 mA cm⁻² of OER current density, the overpotentials (η_{10}) at Fe₂O₃/NC/Fe-MOF and Fe₂O₃/NC are 240 and 312 mV, respectively, which are much larger than that of S-doped Fe₂O₃/NC/Fe-MOF (185 mV). And the OER activity follows the trend: S-doped Fe₂O₃/NC/Fe-MOF > Fe₂O₃/NC/Fe-MOF > Fe₂O₃/NC/Fe-MOF indicating the synergistic effect of the components in the S-doped Fe₂O₃/NC/Fe-MOF heterostructure.

Sample	R _s	R _{ct}	CPE1	R _{mt}	CPE2
	(Ω cm ⁻²)	(Ω cm ⁻²)		(Ω cm ⁻²)	
S-doped Fe ₂ O ₃ /NC/Fe-MOF	1.057	0.1812	0.4051	0.1126	0.0094
Fe-CC	1.092	0.2244	0.0065	0.1726	0.3399
FeS ₂ /NC/Fe-MOF	1.646	0.2445	0.6274	0.1707	0.0119
FeS ₂ /NC	1.242	0.2128	0.0102	0.1378	0.1093

 Table S2 The parameters in simulated equivalent circuits for the samples

Fig. S7 CV curves of (a) Fe-CC, (b) S-doped $Fe_2O_3/NC/Fe-MOF$, (c) $FeS_2/NC/Fe-MOF$ and (d) FeS_2/NC measured in 1 M KOH solution at different scan rates of 20 to 200 mV s⁻¹.

Fig. S8 LSV curves of (a) Fe-CC, (b) S-doped $Fe_2O_3/NC/Fe-MOF$, (c) $FeS_2/NC/Fe-MOF$ and (d) FeS_2/NC before and after 24 h-electrolysis at 2 mV s⁻¹.

Fig. S9 The plot of charge buildup versus time during 4h-electrolysis at a potential of 1.49 V vs RHE (overpotential $\eta = 0.26$ V).

Fig. S10 XRD pattern of S-doped $Fe_2O_3/NC/Fe-MOF$ after 24helectrolysis and the standard profile of Ni.

(e)

(g)

(h)

Fig. S11 SEM images of (a-d) S-doped Fe₂O₃/NC/Fe-MOF, (e, f) FeS₂/NC/Fe-MOF and (g, h) FeS₂/NC after 24h-electrolysis.

(a)

(b)

Fig. S12 EDS and elemental mappings for (a) S-doped $Fe_2O_3/NC/Fe-MOF$, (b) $FeS_2/NC/Fe-MOF$ and (c) FeS_2/NC after 24h-electrolysis.

	Fe-site for Fe ₂ O ₃	Fe-site for FeS ₂
$\Delta G_{\text{M-OH}*}(\text{eV})$	0.841	0.859
$\Delta G_{\text{M-O*}}(\text{eV})$	2.043	1.128
$\Delta G_{\text{M-OOH}*}(\text{eV})$	3.835	2.700
$\Delta G_1(\text{eV})$	1.674	1.692
$\Delta G_2(\text{eV})$	2.035	1.102
$\Delta G_3 (eV)$	2.625	2.405
$\Delta G_4(\mathrm{eV})$	1.918	3.053

Table S3 The DFT calculation results for Fe_2O_3 and FeS_2

Fig. S13 TDOS and PDOS for (a) FeS_2 and (b) Fe_2O_3 , in which s, p and d orbitals are denoted in blue, red and green, respectively. The position of the Fermi level is indicated by a black dotted vertical line at 0 eV.

(b)

References:

- 1. F. Qiu, J. Shi, M. Guo, S. Chen, J. Xia and Z. H. Lu, Inorg Chem, 2021, 60, 959-966.
- B. Jiang, Z. Wan, Y. Kang, Y. Guo, J. Henzie, J. Na, H. Li, S. Wang, Y. Bando, Y. Sakka and Y. Yamauchi, Nano Energy, 2021, 81, 105644.
- X. J. Wei, Y. H. Li, H. R. Peng, D. Gao, Y. Q. Ou, Y. B. Yang, J. R. Hu, Y. H. Zhang and P. Xiao, *Chem Eng J*, 2019, 355, 336-340.
- H. A. Bandal, A. R. Jadhav, A. A. Chaugule, W. J. Chung and H. Kim, *Electrochim Acta*, 2016, 222, 1316-1325.
- 5. Y. L. Tong, B. Q. Chi, D. L. Qi and W. Q. Zhang, Rsc Adv, 2021, 11, 1233-1240.
- K. L. Guo, Y. T. Wang, S. Z. Yang, J. F. Huang, Z. H. Zou, H. R. Pan, P. S. Shinde, S. L. Pan, J. E. Huang and C. L. Xu, *Sci Bull*, 2021, 66, 52-61.
- Q. Q. Xu, W. Huo, S. S. Li, J. H. Fang, L. Li, B. Y. Zhang, F. Zhang, Y. X. Zhang and S. W. Li, *Appl Surf Sci*, 2020, 533.
- S. A. Shah, X. P. Shen, A. H. Yuan, Z. Y. Ji, X. Y. Yue, G. X. Zhu, H. B. Zhou, K. Q. Xu, J. Zhu and Y. Chen, *Appl Surf Sci*, 2020, 527.
- J. Luo, W. H. Guo, Q. Zhang, X. H. Wang, L. Shen, H. C. Fu, L. L. Wu, X. H. Chen, H. Q. Luo and N. B. Li, Nanoscale, 2020, 12, 19992-20001.
- 10. A. Samanta, S. Das and S. Jana, Acs Sustain Chem Eng, 2019, 7, 12117-12124.
- 11. Y. Gao, N. Zhang, C. R. Wang, F. Zhao and Y. Yu, Acs Appl Energ Mater, 2020, 3, 666-674.
- C. Q. Li, T. Zhao, S. Y. H. Abdalkarim, Y. H. Wu, M. T. Lu, Y. W. Li, J. K. Gao and J. M. Yao, Z Anorg Allg Chem, 2018, 644, 1103-1107.
- X. L. Wang, H. Xiao, A. Li, Z. Li, S. J. Liu, Q. H. Zhang, Y. Gong, L. R. Zheng, Y. Q. Zhu, C. Chen, D. S. Wang, Q. Peng, L. Gu, X. D. Han, J. Li and Y. D. Li, *J Am Chem Soc*, 2018, 140, 15336-15341.
- S. S. Zhu, L. A. Huang, Z. S. He, K. Wang, J. F. Guo, S. E. Pei, H. B. Shao and J. M. Wang, *J Electroanal Chem*, 2018, 827, 42-50.
- 15. W. P. Wang, Y. Xu, J. L. Yao, X. E. Liu, Z. M. Yin and Z. C. Li, Dalton T, 2020, 49, 13352-13358.
- M. J. Wang, X. Q. Zheng, L. L. Song, X. Feng, Q. Liao, J. Li, L. Li and Z. D. Wei, *J Mater Chem A*, 2020, 8, 14145-14151.
- 17. Y. Hai, L. Liu and Y. Gong, Inorg Chem, 2021, 60, 5140-5152.
- 18. W. Wang, L. Liu, W. C. Leng, L. L. Cui and Y. Gong, Inorg Chem, 2021, 60, 12136-12150.
- 19. J. H. Yu, G. Z. Cheng and W. Luo, J Mater Chem A, 2017, 5, 15838-15844.
- 20. S. Liang, B. Wei, M. K. Yuan, Y. Li, X. Ma, Y. Y. Wu and L. L. Xu, Chemistryselect, 2020, 5, 3062-3068.