Supporting Information

Defect-related luminescence behavior of a Mn⁴⁺ non-equivalently doped fluoroantimonate red phosphor

Tingting Deng ^{a, *}, Shuai Zhang ^b, Rongfu Zhou ^a, Ting Yu ^c, Ming Wu ^d, Xueliang Zhang ^a, Konglan Chen ^a, Yayun Zhou ^{b, *}

^a Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528225, China

^b State Key Laboratory of Luminescent Materials and Devices, and Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou 510641, China

^c School of Applied Physics and Materials, Wuyi University, Jiangmen, Guangdong 529020, China

^d School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China

Figures

Fig. S1 The unit cell structure of RbSbF₆.

Fig. S2 (a) The TG thermal analysis of $RbSbF_6$ matrix. (b) The EPR spectrum of phosphor $RbSbF_6$:Mn⁴⁺.

Fig. S3 Excitation of $BaSO_4$ and reflection, emission spectra of $RbSbF_6:Mn^{4+}$ (0.11%).

The absorption efficiency (AE), IQE, and EQE were calculated definitely by the following equations: $^{\rm 1}$

$$AE = \frac{\int \lambda \left\{ E(\lambda) - R(\lambda) \right\} d\lambda}{\int \lambda \cdot E(\lambda) d\lambda}$$
$$IQE = \frac{\int \lambda \cdot P(\lambda) d\lambda}{\int \lambda \left\{ E(\lambda) - R(\lambda) \right\} d\lambda}$$
$$EQE = IQE \times AE = \frac{\int \lambda \cdot P(\lambda) d\lambda}{\int \lambda \cdot E(\lambda) d\lambda}$$
$$(2)$$

where $E(\lambda)/hv$, $R(\lambda)/hv$, and $P(\lambda)/hv$ are the number of photons in the spectra of excitation, reflectance, and emission of phosphor, respectively.

Fig. S4 The normalized (a) PLE and (b) PL of phosphor $RbSbF_6:0.11\%Mn^{4+}$ as a function of temperature.

Fig. S5 The Raman spectrum of RbSbF₆.

Fig. S6 The temperature-dependent PL and normalized PL of (a, b) RSbFM:0.04% and (c, d) RSbFM:0.32%.

Fig. S7 The emission spectra through commercial blue, green, and red color filters of fabricated WLED using commercial green β -Sialon:Eu²⁺, blue chip InGaN and RbSbF₆:Mn⁴⁺.

Tables:

Theoretical concentration (mol %)	Effective concentration (mol %)
K ₂ MnF ₆ : RbSbF ₆	$ m RbSbF_6:Mn^{4+}$
0.5	0.04
1.0	0.11
2.0	0.32
5.0	1.29
8.0	4.07
10.0	5.12

Table S1. ICP results of Mn concentration of RbSbF₆:Mn⁴⁺ phosphors.

Table S2. The lifetime of samples RbSbF₆:Mn⁴⁺ fitted by single or double exponential function.

Sample (x	Time counts (ms)		Relative amplitude		Average lifetime	<i>R</i> ²	Residuals
mol%)	$ au_{ m radiative}$	$ au_{non-radiative}$	$A_{\rm radiative}$	$A_{non-radiative}$	(ms)		
0.04	5.7771				5.78	0.9994	
0.11	5.6468				5.65	0.9991	
0.32	5.5726	0.2907	6053.4497	1409.3898	5.51	0.9995	
1.29	5.1339	0.3729	4203.8727	2737.0537	4.92	0.9989	
4.07	4.9644	0.2763	845.5088	3713.8693	4.04	0.9968	
5.12	4.7667	0.2362	435.1032	4603.0734	3.21	0.9959	

The double exponential function is expressed as follows: $I(t)=A_{1}exp(-\tau/\tau_{1})+A_{2}exp(-\tau/\tau_{2})$

(1)

where *I* is the luminescence intensity, τ_1 and τ_2 are lifetime components of Mn⁴⁺ emission, A_1 and A_2 are the weight of these two-lifetime components. The lifetime of Mn⁴⁺ can be calculated by:

$$\tau = \frac{A_1 \tau_1^2 + A_2 \tau_2^2}{A_1 \tau_1 + A_2 \tau_2}$$
(2).

Phosphor	Doping concentration	Lifetime (ms)	Ref.
Na ₃ AlF ₆ :Mn ⁴⁺	0.6%	5.91	2
Na ₃ GaF ₆ :Mn ⁴⁺	0.3%	4.97	3
KTeF ₅ :Mn ⁴⁺	0.13%	5.41	4
$K_3ZrF_7:Mn^{4+}$	1.73%	4.45	5
$RbSbF_6:Mn^{4+}$	0.11%	5.65	this work

Table R3 The lifetime of some Mn⁴⁺ non-equivalently or non-octahedrally doped fluorides.

Table S4. Photoelectric parameters of W-LEDs fabricated with blue chips InGaN, commercial green phosphor β -Sialon:Eu²⁺, and various fluoride red phosphors.

Phosphor	CCT (K)	Efficacy	Chromaticity	NTSC	Ref.	
		(lm/W)	coordinates (x, y)	(%)		
$K_2SiF_6:Mn^{4+}$	8000	94		85.9	1	
$K_3SiF_7:Mn^{4+}$	5686		(0.343, 0.341)	81	6	
$K_2GeF_6:Mn^{4+}$	5013	103.12		120.1	7	
$Cs_2SiF_6:Mn^{4+}$	6880	133	(0.302, 0.349)	84.7	8	
$Cs_2MnF_6{:}Si^{4+}$	7856	26.0	(0.2976, 0.3032)	122.3	9	
$K_2NaScF_6:Mn^{4+}$	5986	67.65	(0.3219, 0.3356)	127.3	10	
$K_2NaScF_6:Mn^{4+}$	8841	73.7	(0.2883, 0.2996)	105.6	11	
$Rb_2NaScF_6:Mn^{4+}$	8458	80.7	(0.2891, 0.3056)	108.4	11	
$Cs_2NaScF_6:Mn^{4+}$	8470	77.0	(0.2852, 0.3159)	105.6	11	
$Cs_2KGaF_6:Mn^{4+}$		106.30	(0.2811, 0.3107)	114.6	12	
$(NH_4)_3SiF_7:Mn^{4+}$	6844	39.3	(0.3099, 0.3112)	122.8	13	
$K_2NbF_7:Mn^{4+}$	4775	78.14	(0.3506, 0.3476)	86.7	14	
$KNaMo_2F_4:Mn^{4+}$	4476	81.43	(0.3374, 0.335)	105	15	
K ₃ HF ₂ NbOF ₅ :Mn ⁴⁺	6688	95.78	(0.3126, 0.3093)	108.6	16	
$RbSbF_6:Mn^{4+}$	10742	103.7	(0.2991, 0.3020)	121.7	this work	

Equation

The formation energy of RbSbF₆:Mn⁴⁺ with one Mn atom substitution on one Sb site of the 2 × 2 × 2 supercell was calculated by DFT using the following equation:

$$E_f = E(doped) - E(pure) - \mu_{Sb} + \mu_{Mn}$$

where E(doped) and E(pure) are the total energies of Sb³⁺ doped system and perfect system, and the u_{Sb} and u_{Mn} are denoted as the chemical potentials of Sb and Mn atoms, respectively. For the metal cations, the chemical potentials were obtained from the calculations of the respective bulk materials. For the F atom, its chemical potential was gained from the calculation of F₂ molecule.

Reference

1. L. Wang, X. Wang, T. Kohsei, K. I. Yoshimura, M. Izumi, N. Hirosaki, R. J. Xie, Optic

Express, 2015, 23, 28707-28717.

2. E. H. Song, J. Q. Wang, S. Ye, X. F. Jiang, M. Y. Peng and Q. Y. Zhang, *J. Mater. Chem. C*, 2016, 4, 2480-2487.

3. T. T. Deng, E. H. Song, J. Sun, L. Y. Wang, Y. Deng, S. Ye, J. Wang and Q. Y. Zhang, J. Mater. Chem. C, 2017, 5, 2910-2918.

4. T. T. Deng, E. H. Song, J. Su, Y. Y. Zhou, L. Y. Wang, S. Ye and Q. Y. Zhang, *J. Mater. Chem. C*, 2018, 6, 4418 -4426.

5. H. Y. Tan, M. Z. Rong, Y. Y. Zhou, Z. Y. Yang, Z. L. Wang, Q. H. Zhang, Q. Wang and Q. Zhou, Dalton Transactions, 2016, 45, 9654–9660.

6. M. Noh, D.H. Yoon, C. H. Kim, S. J. Lee, J. Mater. Chem. C, 2019, 7, 15014-15020.

7. H. J. Yu, B. C. Wang, X. Y. Bu, Y. G. Liu, J. Chen, Z. H. Huang, M. H. Fang, *Ceram. Int.*, 2020, 46, 18281-18286.

8. Y. Liu, Z. Zhou, L. Huang, M. G. Brik, S. Si, L. Lin, T. Xuan, H. Liang, J. Qiu, J. Wang, J. Mater. Chem. C, 2019, 7, 2401-2407.

9. J. Zhang, L. Liu, S. He, J. Peng, F. Du, F. Yang, X. Ye, Inorg. Chem., 2019, 58,15207-15215.

10. H. Ming, L. Liu, S. He, J. Peng, F. Du, J. Fu, F. Yang, X. Ye, J. Mater. Chem. C, 2019, 7, 7237-7248.

11. Y. Y. Zhou, E. H. Song, M. G. Brik, Y. J. Wang, T. Hu, Z. G. Xia, Q. Y. Zhang, *J. Mater. Chem. C*, 2019, 7, 9203-9210.

12. J. Li, Y. J. Wang, H. F. Zhe, Y. Y. Zhou, Q. Zhou, Z. L.Wang, J. Alloys Compd., 2021, 881, 160624.

13. T. T. Deng, E. H. Song, Y. Y. Zhou, J. Y. Chen, W. L. Liu, H. W. Deng, X. Q. Zheng, H. Y. Huang, *J. Alloys Compd.*, 2020, 847, 156550.

14. H. Lin, T. Hu, Q. Huang, Y. Cheng, B. Wang, J. Xu, J. Wang, Y. Wang, *Laser Photon. Rev.*, 2017, 11, 1700148.

15. J. Wu, B. Wang, Z. Y. Liu, K. Zhang, X. S. Li, J. H. Huang, P. F. Liu, Q. G. Zeng, *Dalton Trans.*, 2021, 50, 11189-11196.

16. L. Q. Yao, S. G. He, W. D. Nie, L. Fu, Z. J. Liao, W. T. Cai, R. X. Wang, J. Q. Peng, X. Y. Ye, *J. Lumin.*, 2021, 238, 118315.