Electronic Supplementary Information

for

1,2-Bis(5-(trinitromethyl)-1,2,4-oxadiazol-3-yl)diazene: A Water Stable, High-Performing Green Oxidizer

Ajay Kumar Chinnam,[‡] Richard J. Staples,[£] Jean'ne M. Shreeve^{*‡}

* Department of Chemistry, University of Idaho, Moscow, ID 83844-2343 USA, E-mail: jshreeve@uidaho.edu

 $^{
m f}$ Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA

Table of Contents

1.	Experimental Section	S2
2.	Theoretical Calculations	S2
3.	X-ray crystallographic data for 14	S4
4.	NMR and FTIR spectroscopy	S10
5.	DSC Plots	S12

1. Experimental Section

Caution! Although no explosions or detonations occurred during the preparation or handling of these nitrogen-rich compounds, appropriate safety precautions (protective gloves and coats, face shield and explosion-proof baffle) must be followed to ensure safety.

General Information

Reagents were purchased from Aldrich and Acros Organics and were used as received. ¹H, ¹³C and ¹⁵N NMR spectra were recorded on a 500 MHz (Bruker AVANCE 500) nuclear magnetic resonance spectrometer operating at 500, 125, and 50.69 MHz, respectively, by using DMSO-d₆ or acetone-d₆ or chloroform-d or acetonitrile-d₃ as the solvent and locking solvent. Tetramethyl silane, and nitromethane are used as references for ¹H, ¹³C, and ¹⁵N, respectively, NMR spectra. The melting and decomposition (onset) points were obtained on a differential scanning calorimeter (TA Instruments Co., model Q2000) at a scan rate of 5 °C min⁻¹. IR spectra were recorded using KBr pellets for solids on a Nicolet Thermo-model AVATAR 370-spectrometer. Density was measured at room temperature by employing a Micromeritics AccuPyc II 1340 gas pycnometer. Elemental analyses (C, H, N) were determined using a Vario Micro-cube Elementar Analyser. The sensitivities to impact (IS) and friction (FS) were determined according to BAM standards.

Synthesis of Compound 14: Compound **13**¹ (430 mg, 1.05 mmol) was dissolved in concentrated H_2SO_4 (3.0 mL) and cooled to -5 °C. To this fuming HNO_3 (1.5 mL) was added dropwise over 30 minutes. The temperature of this reaction was kept below 0 °C during this addition. After that, the reaction mixture was stirred at ice temperature for 1 hour and at room temperature for 2 hours. A yellow precipitate formed, and the reaction mixture was poured into ice-cold water. The precipitate was collected by filtration and washed with cold water (2.0 mL) and dried at room temperature to give a pure yellow solid compound **5** (455 mg, 93%). T_{dec} (5 °C min⁻¹): 125 °C (onset); ¹³C NMR (125 MHz, acetone-d₆): δ 175.9, 164.4, 118.9; ¹⁵N NMR (50.66 MHz, acetone-d₆): δ +143.6, +4.0, -40.4, -130.6; IR (KBr): v 3429, 2888, 1614 (C=N), 1495 (NO₂), 1334 (C-N), 1275 (C-O), 1092, 1020, 961, 938, 840, 797, 767, 725, 662 cm⁻¹. Anal. Calcd for C₆N₁₂O₁₄ (436.96): C, 15.53; H, 0.00; N, 36.21; found: C, 15.50; H, 0.214; N, 35.83.

2. Theoretical Calculations

Heats of formation for compounds **14**, was calculated based on isodesmic reactions (Scheme S1). The calculations were carried out using Gaussian 03 (Revision D.01) suite of programs.² The geometric optimization and frequency analyses of the structures were calculated using B3LYP/6-31+G** level. The gas phase enthalpy of formation was calculated, and the enthalpy of reaction was obtained by combining the MP2/6- 311++G** energy difference for the reactions, the scaled zero-point energies (ZPE), values of thermal correction (HT), and other thermal factors.

Isodesmic Reactions

Scheme S1.

Table S1 Calculated zero point energy (ZPE), values of the correction (Hr), total energy (E0) and gas-state heats of formation (HOF).^a

Compound	ZPE [Hartree /Particle]	HT [Hartree /Particle]	E0 [kJ mol ⁻¹]	HOF (gas) [kJ mol ⁻ 1]
14	0.148746	0.177314	-1933.9127816	461.414
14f	0.137505	0.150788	-709.3940216	295.552
14fm	0.074089	0.080182	-300.6855029	17.0516

^a The enthalpy of sublimation was calculated by using Trouton's rule. Solid-state heats of formation of the resulting compounds were calculated with Equation (1) in which T_m is the melting temperature.

$$\Delta Hf = \Delta Hf(g) - \Delta Hsub = \Delta Hf(g) - 188[J \text{ mol}^{-1} \text{ K}^{-1}] \times T_m$$
(1)

References

1. Y. Tang, C. He, G. H. Imler, D. A. Parrish and J. M. Shreeve, *Chem. Eur. J.* 2017, 23, 16401–16407.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian 03 (Revision E.01), Gaussian, Inc., Wallingford CT, 2004.

3. X-ray crystallographic data

Table S2. Selected crystal	14	
parameters of 14		
CCDC	2106963	
Empirical formula	$C_6N_{12}O_{14}$	
Formula mass	464.18	
Crystal System	triclinic	
Space Group	<i>P</i> -1	
Ζ	2	
a/Å	5.92194(16)	
b/Å	11.2781(3)	
c/Å	12.7041(4)	
$\alpha/^{\circ}$	106.137(2)	
β/°	92.992(2)	
$\gamma/^{\circ}$	92.277(2)	
V/Å ³	812.64(4)	
$D_{calc.}$ / g cm ⁻³	1.897	
<i>Т/</i> К	100(10)	
F(000)	464.0	
h, k, l	7,14,15	
μ (mm ⁻¹)	1.691	
$R1 [I > 2\sigma(I)]$	0.0660	
Completeness to theta full	0.951	
wR2 (all data)	0.1903	
S on F2	1.057	

Compound 14

Figure S1: Molecular structure of 14

Figure S2: Single-crystal X-ray structure of 14

Table S3: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **14**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom	X	У	Z	U _{eq}
01	-1903(4)	2395(2)	6231.9(18)	29.3(5)
02	-564(10)	653(4)	7108(3)	108(2)
03	2306(5)	1020(2)	8264(3)	46.1(7)
04	4450(4)	2989(2)	7537(2)	31.5(5)
05	3422(4)	3848(2)	9190.8(18)	28.3(5)
06	-1208(5)	4318(4)	8904(2)	57.9(9)
07	-1653(5)	2516(4)	9217(3)	75.1(13)
N1	-832(4)	4619(2)	4901(2)	27.2(6)
N2	658(4)	3962(3)	6513(2)	26.8(6)
N3	-2378(4)	2977(3)	5419(2)	29.6(6)
N4	836(7)	1320(3)	7725(3)	45.9(9)
N5	3094(4)	3261(2)	8241(2)	23.0(5)
N6	-890(5)	3229(4)	8761(2)	45.0(9)
C1	-819(5)	3874(3)	5619(2)	25.8(6)
C2	-93(5)	3041(3)	6829(2)	25.9(7)
C3	702(5)	2711(3)	7844(3)	27.8(7)
01A	2531(3)	2500(2)	3813.3(18)	25.3(5)
02A	2211(4)	666(2)	1199(2)	38.9(6)
03A	2118(5)	2404(4)	731(3)	68.7(11)
04A	3531(6)	4300(3)	2913(3)	61.0(10)
05A	6152(5)	4021(2)	1734(2)	42.1(6)
06A	6859(5)	1151(3)	822(2)	43.7(7)
07A	8484(4)	2205(2)	2435(2)	36.1(6)
N1A	4185(4)	340(2)	5120(2)	21.1(5)
N2A	5064(4)	1064(2)	3489(2)	21.1(5)
N3A	2769(5)	1722(3)	1264(2)	37.4(7)
N4A	4822(5)	3685(3)	2303(3)	36.1(7)
N5A	6893(5)	1807(3)	1757(2)	31.2(6)

Atom	X	у	Z	U_{eq}
N11	2361(4)	1897(2)	4631(2)	25.3(6)
C1A	3899(5)	1081(3)	4400(2)	20.1(6)
C2A	4158(5)	1940(3)	3188(2)	21.1(6)
C3A	4636(5)	2311(3)	2177(2)	22.9(6)

Table S4: Anisotropic Displacement Parameters (×10⁴) for **14**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$

Atom	U 11	U ₂₂	U 33	U 23	<i>U</i> ₁₃	U ₁₂
01	19.3(10)	38.7(12)	24.2(11)	1.1(9)	-0.5(8)	-6.1(9)
02	169(5)	75(2)	80(3)	51(2)	-81(3)	-89(3)
03	50.6(17)	33.2(13)	52.0(17)	6.2(12)	11.9(14)	3.4(12)
04	20.9(10)	41.6(13)	32.5(12)	10.0(10)	8.1(9)	4.5(9)
05	25.5(11)	33.9(12)	23.1(11)	5.7(9)	-3.9(8)	-3.8(9)
06	26.7(13)	89(2)	34.6(15)	-22.3(15)	4.6(11)	6.3(14)
07	30.6(14)	171(4)	54(2)	76(2)	19.8(13)	30.4(19)
N1	20.1(11)	31.9(13)	22.8(13)	-3.6(10)	0.0(9)	4.4(9)
N2	21.0(12)	34.8(14)	18.6(12)	-1.4(10)	-1.2(10)	-1.6(10)
N3	20.7(12)	38.6(15)	23.9(13)	0.3(11)	-0.9(10)	0.3(11)
N4	66(2)	41.4(18)	23.7(15)	3.9(13)	-0.7(15)	-28.1(17)
N5	18.5(12)	24.8(12)	25.0(13)	6.2(10)	1.7(10)	0.3(9)
N6	15.2(13)	95(3)	18.2(14)	4.9(16)	0.8(10)	4.5(15)
C1	18.3(13)	31.8(16)	20.1(14)	-4.4(12)	0.3(11)	3.7(12)
C2	19.5(13)	32.3(16)	19.0(14)	-4.0(12)	2.5(11)	-3.8(12)
C3	22.4(14)	36.5(17)	20.1(15)	1.4(12)	3.8(12)	-6.7(12)
01A	21.8(10)	33.0(11)	24.6(11)	12.3(9)	6.4(8)	8.4(8)
02A	38.7(14)	36.5(14)	32.7(13)	-2.2(10)	-5.5(10)	-6.6(11)
03A	43.8(16)	124(3)	60(2)	69(2)	-22.3(15)	-25.3(18)
04A	95(3)	35.6(14)	65(2)	23.2(14)	52.1(19)	31.0(15)
05A	53.8(16)	37.4(14)	36.8(14)	14.4(11)	4.2(12)	-9.5(12)
06A	49.4(16)	49.0(15)	29.5(13)	2.6(11)	14.2(11)	11.1(12)
07A	19.7(11)	53.3(15)	38.4(14)	19.1(12)	-2.4(10)	-0.5(10)
N1A	19.0(11)	22.8(12)	19.8(12)	3.2(9)	1.6(9)	-0.8(9)
N2A	21.2(12)	23.6(12)	17.7(12)	4.1(9)	1.6(9)	2.5(9)
N3A	28.9(14)	60(2)	24.4(14)	13.3(14)	0.1(11)	-0.6(13)
N4A	43.5(17)	36.0(16)	32.2(15)	14.1(13)	4.3(13)	7.0(13)
N5A	28.9(14)	35.4(15)	30.6(15)	10.4(12)	5.4(11)	3.8(11)
N11	23.4(12)	30.5(13)	24.9(13)	11.4(11)	5.4(10)	3.7(10)
C1A	17.1(12)	21.4(13)	19.8(13)	2.8(11)	1.2(10)	-1.8(10)
C2A	18.8(13)	23.2(14)	18.7(14)	2.2(11)	-0.3(10)	0.0(11)
C3A	21.0(14)	27.7(15)	18.8(14)	4.4(11)	0.4(11)	2.2(11)

Table S5: Bond Lengths in A for **14**.

Atom	Atom	Length/Å
01	N3	1.392(4)
01	C2	1.342(4)
02	N4	1.193(5)
03	N4	1.196(5)
04	N5	1.217(3)

Atom	Atom	Length/Å
05	N5	1.205(3)
06	N6	1.213(5)
07	N6	1.202(5)
N1	$N1^1$	1.249(5)
N1	C1	1.401(4)
N2	C1	1.375(4)
N2	C2	1.285(4)
N3	C1	1.303(4)
N4	C3	1.539(5)
N5	C3	1.526(4)
N6	C3	1.539(4)
C2	C3	1.497(5)
01A	N11	1.396(3)
01A	C2A	1.344(3)
02A	N3A	1.202(4)
03A	N3A	1.219(4)
04A	N4A	1.213(4)
05A	N4A	1.214(4)
06A	N5A	1.210(4)
07A	N5A	1.224(4)
N1A	N1A ²	1.254(5)
N1A	C1A	1.409(4)
N2A	C1A	1.374(4)
N2A	C2A	1.281(4)
N3A	C3A	1.546(4)
N4A	C3A	1.512(4)
N5A	C3A	1.537(4)
N11	C1A	1.307(4)
C2A	C3A	1.494(4)

---- ¹-x,1-y,1-z; ²1-x,-y,1-z

 Table S6: Bond Angles in <u>for 14.</u>

1 101 14			
Atom	Atom	Atom	Angle/°
C2	01	N3	105.1(2)
$N1^1$	N1	C1	112.2(3)
C2	N2	C1	100.6(3)
C1	N3	01	103.6(2)
02	N4	03	126.8(4)
02	N4	C3	116.1(4)
03	N4	C3	117.1(3)
04	N5	C3	113.3(2)
05	N5	04	128.8(3)
05	N5	C3	117.8(2)
06	N6	C3	113.7(3)
07	N6	06	129.5(4)
07	N6	C3	116.8(4)
N2	C1	N1	128.0(3)
N3	C1	N1	116.7(3)
N3	C1	N2	115.3(3)
01	C2	C3	117.9(3)
N2	C2	01	115.4(3)
N2	C2	C3	126.4(3)
N5	C3	N4	104.7(3)

Atom	Atom	Atom	Angle/°		
N5	C3	N6	108.3(2)		
N6	C3	N4	107.4(3)		
C2	C3	N4	115.8(3)		
C2	C3	N5	111.0(2)		
C2	C3	N6	109.3(3)		
C2A	01A	N11	105.3(2)		
N1A ²	N1A	C1A	111.3(3)		
C2A	N2A	C1A	100.6(2)		
02A	N3A	03A	131.0(3)		
02A	N3A	C3A	114.4(3)		
03A	N3A	C3A	114.6(3)		
04A	N4A	05A	128.3(3)		
04A	N4A	C3A	115.7(3)		
05A	N4A	C3A	115.8(3)		
06A	N5A	07A	130.4(3)		
06A	N5A	C3A	117.3(3)		
07A	N5A	C3A	112.2(3)		
C1A	N11	01A	103.0(2)		
N2A	C1A	N1A	127.9(3)		
N11	C1A	N1A	116.3(3)		
N11	C1A	N2A	115.7(3)		
01A	C2A	C3A	118.7(2)		
N2A	C2A	01A	115.4(3)		
N2A	C2A	C3A	125.7(3)		
N4A	C3A	N3A	108.0(3)		
N4A	C3A	N5A	106.3(2)		
N5A	C3A	N3A	107.2(2)		
C2A	C3A	N3A	109.4(2)		
C2A	C3A	N4A	116.1(2)		
C2A	C3A	N5A	109.5(2)		
¹ -x,1-y,1-z; ² 1-x,-y,1-z					

Table S7: Torsion Angles in ° for **14**.

Atom	Atom	Atom	Atom	Angle/°
01	N3	C1	N1	178.5(2)
01	N3	C1	N2	-1.0(3)
01	C2	C3	N4	45.0(4)
01	C2	C3	N5	164.2(2)
01	C2	C3	N6	-76.4(3)
02	N4	C3	N5	-156.6(4)
02	N4	C3	N6	88.4(4)
02	N4	C3	C2	-34.0(5)
03	N4	C3	N5	24.2(4)
03	N4	C3	N6	-90.8(4)
03	N4	C3	C2	146.7(3)
04	N5	C3	N4	71.5(3)
04	N5	C3	N6	-174.1(3)
04	N5	C3	C2	-54.1(3)
05	N5	C3	N4	-105.5(3)
05	N5	C3	N6	8.9(4)
05	N5	C3	C2	128.9(3)
06	N6	C3	N4	-177.2(3)

Atom	Atom	Atom	Atom	Angle/°
06	N6	C3	N5	70.2(3)
06	N6	C3	C2	-50.8(4)
07	N6	C3	N4	1.9(4)
07	N6	C3	N5	-110.7(3)
07	N6	C3	C2	128.3(3)
$N1^1$	N1	C1	N2	5.2(5)
$N1^1$	N1	C1	N3	-174.1(3)
N2	C2	C3	N4	-141.7(3)
N2	C2	C3	N5	-22.5(4)
N2	C2	C3	N6	96.9(4)
N3	01	C2	N2	0.2(3)
N3	01	C2	C3	174.3(3)
C1	N2	C2	01	-0.8(3)
C1	N2	C2	C3	-174.2(3)
C2	01	N3	C1	0.4(3)
C2	N2	C1	N1	-178.3(3)
C2	N2	C1	N3	1.1(3)
01A	N11	C1A	N1A	178.0(2)
01A	N11	C1A	N2A	-1.0(3)
01A	C2A	C3A	N3A	-76.8(3)
01A	C2A	C3A	N4A	45.7(4)
01A	C2A	C3A	N5A	166.1(2)
02A	N3A	C3A	N4A	-169.1(3)
02A	N3A	C3A	N5A	76.8(3)
02A	N3A	C3A	C2A	-41.8(4)
03A	N3A	C3A	N4A	11.1(4)
03A	N3A	C3A	N5A	-103.0(3)
03A	N3A	C3A	C2A	138.3(3)
04A	N4A	C3A	N3A	86.0(4)
04A	N4A	C3A	N5A	-159.3(3)
04A	N4A	C3A	C2A	-37.2(4)
05A	N4A	C3A	N3A	-89.9(3)
05A	N4A	C3A	N5A	24.8(4)
05A	N4A	C3A	C2A	146.9(3)
06A	N5A	C3A	N3A	4.7(4)
06A	N5A	C3A	N4A	-110.5(3)
06A	N5A	C3A	C2A	123.3(3)
07A	N5A	C3A	N3A	-178.7(3)
07A	N5A	C3A	N4A	66.0(3)
07A	N5A	C3A	C2A	-60.2(3)
N1A ²	N1A	C1A	N2A	4.3(5)
N1A ²	N1A	C1A	N11	-174.6(3)
N2A	C2A	C3A	N3A	98.3(3)
N2A	C2A	C3A	N4A	-139.2(3)
N2A	C2A	C3A	N5A	-18.8(4)
N11	01A	C2A	N2A	-0.1(3)
N11	01A	C2A	C3A	175.4(2)
C1A	N2A	C2A	01A	-0.4(3)
C1A	N2A	C2A	C3A	-175.7(3)
C2A	01A	N11	C1A	0.7(3)
C2A	N2A	C1A	N1A	-178.0(3)
C2A	N2A	C1A	N11	1.0(3)

----¹-x,1-y,1-z; ²1-x,-y,1-z

4. NMR and FTIR Spectroscopy

Figure S4. ¹³C NMR spectrum of **14** in acetone- d_6

Figure S5. ¹⁵N NMR spectrum of **14** in acetone- d_6

Figure S6. FTIR spectra of 14

5. DSC Plots

Figure S7. DSC thermogram of 14 at 5 °C per minute

Hydrolytic Stability of compound 14 in water. The stability of compound 14 in water was determined and the results are shown in the Figures S8-S10. Compound 14 (50 mg) was added to water (2.0 mL) and kept at room temperature until the water evaporated. Since compound 14 is insoluble in water, it doesn't hydrolyze to the carbonyl compound 14 Oxo or any other side products. After the evaporation of water, a yellow solid product was collected and its thermostability was determined using DSC at the heating rate of 10 °C per minute. The DSC thermograms of pure compound 14 (Figure S9) and that of the yellow solid 14 from water (Figure S10) are almost identical.

Figure S8. Stability test in water (a) Pure compound **14**; (b) Compound **14** in water; (c) Compound **14** after evaporation of water.

Figure S9. DSC thermogram of pure compound 14-at 10 °C per minute

Figure S10. DSC thermogram of 14·(after drying from water) at 10 °C per minute