Supporting Information

The role of anionic heterovalent $[PO_4]^{3-} \rightarrow [GeO_4]^{4-}$ substitution on the luminescent properties in inorganic phosphors with the β -Ca₃(PO₄)₂ type structure: New data based on accurate crystal structure refinement

Dina V. Deyneko^{1,2*}, Ivan V. Nikiforov¹, Bogdan I. Lazoryak¹, Sergey M. Aksenov^{2,3}

¹ Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia

² Laboratory of Arctic Mineralogy and Material Sciences, Kola Science Centre, Russian Academy of Sciences, 14 Fersman str., Apatity 184209, Russia

³ Geological Institute, Kola Science Centre, Russian Academy of Sciences, 14 Fersman Street, Apatity 184209, Russia

* Corresponding author: Chemistry Department, Moscow State University, 119991 Moscow, Russia.

*Corresponding author:	deynekomsu@gmail.com					
	Tel.: +74959393687					
	Fax.: +74959393	3316				
	E-mail: deyneko	msu@gm	ail.ru			
	Chemistry Dep	oartment,	Moscow	State	University,	Leninskie
	Gory 1, 119991	Moscow,	Russia.			

Fig. S1. The dependence of the cell volume V on the x, $(\text{GeO}_4)^{4-}$ concentration in $\text{Ca}_{8+0.5x}\text{ZnEu}(\text{PO}_4)_{7-x}(\text{GeO}_4)_x$.

Phase	$Ca_{8.2}EuZnGe_{0.4}P_{6.6}O_{28}$
$M_{ m r}$	1227.4
Temperature, K	300
Crystal system, space group	Trigonal, R3c
<i>a</i> , <i>c</i> (Å)	10.38838(1), 37.22381(6)
$V(Å^3)$	3478.954(9)
Ζ	6
D_x (Mg m ⁻³)	3.5152
Radiation type	Cu Ka
Diffractometer	Rigaku SmartLab SE
θ-Range	2.5–40, step size (°) 0.02
$R_{ m wp}$	0.082
R _p	0.070
$R_{ m Bragg}$	0.051
S	2.54
No. of parameters	79

Table S1. Main Crystallographic Data and experimental details for Ca_{8.2}EuZn(PO₄)_{6.6}(GeO₄)_{0.4}.

$Ca_{8.3}EuZnGe_{0.6}P_{6.4}O_{28}$
1239.8
300
Trigonal, R3c
10.42877(3), 37.3433(1)
3517.321(9)
6
3.5119
Cu Ka
Rigaku SmartLab SE
2.5–40, step size (°) 0.02
0.089
0.083
0.059
2.73
79

Table S2. Main Crystallographic Data and experimental details for Ca_{8.3}EuZn(PO₄)_{6.4}(GeO₄)_{0.6}.

Atom	Wyckoff site	x	У	Z	$U_{\rm iso}$	SOF
<i>M</i> 1	18 <i>b</i>	0.7154(1)	0.8307(3)	0.1724(6)	0.0113(6)	Ca _{0.845(1)} Eu _{0.155(1)}
М2	18 <i>b</i>	0.6222(2)	0.8242(3)	-0.0295(8)	0.0113(6)	Ca _{0.888(1)} Eu _{0.112(1)}
МЗ	18 <i>b</i>	0.7016(4)	0.8026(4)	0.0679(2)	0.0113(6)	Ca _{0.934(1)} Eu _{0.066(1)}
<i>M</i> 4	6 <i>a</i>	0	0	-0.0644(1)	0.0113(6)	Ca _{0.20(1)}
Znl	6 <i>a</i>	0	0	0.7369(6)	0.0113(6)	Zn _{1.0}
<i>T</i> 1	6 <i>a</i>	0	0	0.0061(5)	0.016(3)	P _{1.0}
<i>T</i> 2	18 <i>b</i>	0.6877(9)	0.8578(2)	0.8709 (4)	0.016(3)	P _{1.0}
<i>T</i> 3	18 <i>b</i>	0.6609(1)	0.8495(1)	0.7712(5)	0.016(3)	$P_{0.967(1)}Ge_{0.133(1)}$
01	18 <i>b</i>	0.7280(5)	0.8959(3)	0.9079(5)	0.011(3)	O _{1.0}
02	18 <i>b</i>	0.7493(1)	0.7619(3)	0.8585(6)	0.011(3)	O _{1.0}
03	18 <i>b</i>	0.7437(3)	1.0027(3)	0.8507(9)	0.011(3)	O _{1.0}
04	18 <i>b</i>	0.5296(1)	0.7706(7)	0.8666(6)	0.011(3)	O _{1.0}
05	18 <i>b</i>	0.6102(2)	0.9718(3)	0.7918(1)	0.011(3)	O _{1.0}
06	18 <i>b</i>	0.5904(3)	0.6856(3)	0.7852(7)	0.011(3)	O _{1.0}
07	18 <i>b</i>	0.8143(2)	0.9131(4)	0.7801(7)	0.011(3)	O _{1.0}
08	18 <i>b</i>	0.6285(5)	0.8277(4)	0.7278(7)	0.011(3)	O _{1.0}
09	18 <i>b</i>	0.0120(2)	0.8728(1)	-0.0203(4)	0.011(3)	O _{1.0}
O10	6 <i>a</i>	0	0	0.0549(9)	0.011(3)	O _{1.0}

Table S3. Atomic coordinates, displacement parameters (Å²) and site-occupancy factors (SOFs)in the structure of $Ca_{8,2}EuZn(PO_4)_{6.6}(GeO_4)_{0.4}$.

Atom	Wyckoff site	x	У	Z	$U_{ m iso}$	SOF
<i>M</i> 1	18 <i>b</i>	0.7191(6)	0.8281(3)	0.1681(3)	0.0113(6)	Ca _{0.877(1)} Eu _{0.123(1)}
М2	18 <i>b</i>	0.6231(3)	0.8313(6)	-0.0285(1)	0.0113(6)	Ca _{0.866(1)} Eu _{0.134(1)}
МЗ	18 <i>b</i>	0.6998(1)	0.8127(3)	0.0776(3)	0.0113(6)	Ca _{0.923(1)} Eu _{0.077(1)}
<i>M</i> 4	6 <i>a</i>	0	0	-0.0644(1)	0.0113(6)	Ca _{0.30(1)}
Znl	6 <i>a</i>	0	0	0.7355(7)	0.0113(6)	Zn _{1.0}
<i>T</i> 1	6 <i>a</i>	0	0	0.0066(6)	0.016(3)	P _{1.0}
<i>T</i> 2	18 <i>b</i>	0.6889(3)	0.8546(6)	0.8726(8)	0.016(3)	P _{1.0}
<i>T</i> 3	18 <i>b</i>	0.6582(2)	0.8449(6)	0.7734(9)	0.016(3)	$P_{0.800(1)}Ge_{0.200(1)}$
01	18 <i>b</i>	0.7254(4)	0.8812(1)	0.9099(7)	0.011(3)	O _{1.0}
02	18 <i>b</i>	0.7501(5)	0.7553(7)	0.8615(3)	0.011(3)	O _{1.0}
03	18 <i>b</i>	0.7453(5)	1.0069(7)	0.8561(3)	0.011(3)	O _{1.0}
04	18 <i>b</i>	0.5347(5)	0.7750(2)	0.8629(1)	0.011(3)	O _{1.0}
05	18 <i>b</i>	0.6102(2)	0.9718(3)	0.7918(4)	0.011(3)	O _{1.0}
06	18 <i>b</i>	0.5881(5)	0.6830(8)	0.7844(2)	0.011(3)	O _{1.0}
07	18 <i>b</i>	0.8132(6)	0.9138(4)	0.7839(1)	0.011(3)	O _{1.0}
08	18 <i>b</i>	0.6211(5)	0.8109(5)	0.7332(6)	0.011(3)	O _{1.0}
09	18 <i>b</i>	0.0120(2)	0.8728(4)	-0.0203(1)	0.011(3)	O _{1.0}
O10	6 <i>a</i>	0	0	0.0548(9)	0.011(3)	O _{1.0}

Table S4. Atomic coordinates, displacement parameters (Å²) and site-occupancy factors (SOFs) in the structure of $Ca_{8.3}EuZn(PO_4)_{6.4}(GeO_4)_{0.6}$.

<i>M</i> 1–O2 ⁱ	2.808(4)	<i>M</i> 4–O1 ^x	2.675(4)
<i>M</i> 1–O3 ⁱⁱ	2.601(5)	<i>M</i> 4–O1 ^{xi}	2.675(4)
$M1-O4^{ii}$	2.387(6)	<i>M</i> 4–O1 ^{xii}	2.675(4)
$M1-O4^{i}$	2.518(7)	M4–O9 ^{xiii}	2.150(3)
$M1-O5^{ii}$	2.158(5)	$M4-O9^{xiv}$	2.150(3)
<i>M</i> 1–O6 ⁱ	2.472(4)	<i>M</i> 4–O9 ^{xv}	2.150(3)
$M1-O8^{iii}$	2.271(3)	< <i>M</i> 4–O>	2.413
<i>M</i> 1–O9 ^{iv}	2.673(2)	M5–O4 ^{xvi}	2.240(2)
< <i>M</i> 1–O>	2.486	M5–O4 ^{xvii}	2.240(7)
<i>M</i> 2–O1 ^v	2.524(2)	M5–O4 ^{xviii}	2.240(2)
$M2-O2^{vi}$	2.423(3)	M5–O7 ^{xix}	2.320(3)
<i>M</i> 2–O3 ^{vii}	2.286(4)	<i>M</i> 5–O7 ^{xx}	2.320(5)
<i>M</i> 2–O5 ^{vii}	2.440(4)	M5–O7 ^{viii}	2.320(3)
$M2-O6^{vi}$	2.591(3)	< <i>M</i> 5–O>	2.280
$M2-O7^{vi}$	2.425(5)	T1–O9 ^{xiii}	1.700(3)
M2–O7 ^{vii}	2.474(4)	$T1-O9^{xiv}$	1.700(3)
<i>M</i> 2–O9 ^{viii}	2.222(2)	$T1-O9^{xv}$	1.700(3)
< <i>M</i> 2–O>	2.423	<i>T</i> 1–O10	1.816(4)
<i>M</i> 3–O1 ^{vii}	2.777(3)	< <i>T</i> 1–O>	1.729
$M3-O2^{vi}$	2.458(4)	<i>T</i> 2–O1	1.436(2)
<i>M</i> 3–O3 ^{vii}	2.485(3)	<i>T</i> 2–O2	1.499(4)
<i>M</i> 3–O5 ⁱⁱ	2.605(5)	<i>T</i> 2–O3	1.514(3)
<i>M</i> 3–O6 ⁱ	2.449(4)	<i>T</i> 2–O4	1.433(7)
<i>М</i> 3–О8 ^{іі}	2.507(5)	<72–O>	1.471
<i>М</i> 3–О8 ^і	2.673(5)	<i>T</i> 3–O5	1.774(4)
<i>M</i> 3–O10 ^{ix}	2.536(1)	<i>T</i> 3–O6	1.569(3)
< <i>M</i> 3–O>	2.562	<i>T</i> 3–O7	1.426(2)
		<i>T</i> 3–O8	1.644(3)
		<73–O>	1.604

Table S5. Selected bond length in the $Ca_{8.2}EuZn(TO_4)_{6.6}(GeO_4)_{0.4}$ structure.

 $\overline{\text{Symmetry codes: (i) } -x+y+2/3, -x+4/3, z-2/3; (ii) } -y+5/3, x-y+4/3, z-2/3; (iii) } x, x-y+1, z-1/2; (iv) \\ -y+4/3, -x+2/3, z+7/6; (v) x, y, z-1; (vi) -y+4/3, -x+5/3, z+1/6; (vii) -x+y+1/3, y-1/3, z+1/6; (viii) -x+y, -x+1, z; (ix) x+1, y+1, z; (x) x-1, y-1, z-1; (xi) -y+1, x-y, z-1; (xii) -x+y, -x+1, z-1; (xiii) x, y-1, z; (xiv) -y+1, x-y+1, z; (xv) -x+y-1, -x, z; (xvi) -y+2/3, -x+1/3, z-1/6; (xvii) -x+y-1/3, y-2/3, z-1/6; (xviii) x-1/3, x-y+1/3, z-1/6; (xix) x-1, y-1, z; (xx) -y+1, x-y, z$

<i>M</i> 1–O2 ⁱ	2.838(4)	<i>M</i> 4–O1 ^x	2.666(4)
<i>M</i> 1–O3 ⁱⁱ	2.657(6)	<i>M</i> 4–O1 ^{xi}	2.666(9)
$M1-O4^{ii}$	2.329(8)	M4–O1 ^{xii}	2.666(4)
$M1-O4^{i}$	2.500(2)	M4–O9 ^{xiii}	2.160(3)
<i>M</i> 1–O5 ⁱⁱ	2.161(1)	<i>M</i> 4–O9 ^{xiv}	2.160(3)
$M1-O6^{i}$	2.483(2)	<i>M</i> 4–O9 ^{xv}	2.160(3)
<i>M</i> 1–O8 ⁱⁱⁱ	2.495(8)	< <i>M</i> 4–O>	2.413
<i>M</i> 1–O9 ^{iv}	2.687(5)	M5–O4 ^{xvi}	2.337(7)
< <i>M</i> 1–O>	2.519	M5–O4 ^{xvii}	2.341(2)
<i>M</i> 2–O1 ^v	2.480(8)	M5–O4 ^{xviii}	2.337(7)
$M2-O2^{vi}$	2.430(1)	M5–O7 ^{xix}	2.476(8)
M2–O3 ^{vii}	2.444(1)	M5–O7 ^{xx}	2.476(4)
M2–O5 ^{vii}	2.519(7)	M5–O7 ^{viii}	2.476(8)
<i>M</i> 2–O6 ^{vi}	2.565(9)	< <i>M</i> 5–O>	2.408
<i>M</i> 2–O7 ^{vi}	2.379(5)	$T1-O9^{xiii}$	1.719(4)
M2–O7 ^{vii}	2.486(2)	$T1-O9^{xiv}$	1.719(4)
M2–O9 ^{viii}	2.204(3)	<i>T</i> 1–O9 ^{xv}	1.719(5)
< <i>M</i> 2–O>	2.439	<i>T</i> 1–O10	1.800(7)
<i>M</i> 3–O1 ^{vii}	2.993(1)	< <i>T</i> 1–O>	1.740
<i>M</i> 3–O2 ^{vi}	2.330(1)	<i>T</i> 2–O1	1.433(7)
<i>M</i> 3–O3 ^{vii}	2.372(1)	<i>T</i> 2–O2	1.521(1)
<i>M</i> 3–O5 ⁱⁱ	2.584(8)	<i>T</i> 2–O3	1.521(6)
<i>M</i> 3–O6 ⁱ	2.442(1)	<i>T</i> 2–O4	1.439(5)
<i>M</i> 3–O8 ⁱⁱ	2.530(1)	<72–O>	1.479
<i>M</i> 3–O8 ⁱ	2.562(1)	<i>T</i> 3–O5	1.772(7)
<i>M</i> 3–O10 ^{ix}	2.520(3)	<i>T</i> 3–O6	1.524(9)
< <i>M</i> 3–O>	2.542	<i>T</i> 3–O7	1.458(6)
		<i>T</i> 3–O8	1.544(7)
		< <i>T</i> 3–O>	1.575

Table S6. Selected bond length in the $Ca_{8.3}EuZn(TO_4)_{6.4}(GeO_4)_{0.6}$ structure.

 $\overline{\text{Symmetry codes: (i)} - x + y + 2/3, -x + 4/3, z - 2/3; (ii)} - y + 5/3, x - y + 4/3, z - 2/3; (iii) x, x - y + 1, z - 1/2; (iv) - y + 4/3, -x + 2/3, z + 7/6; (v) x, y, z - 1; (vi) - y + 4/3, -x + 5/3, z + 1/6; (vii) - x + y + 1/3, y - 1/3, z + 1/6; (viii) - x + y, -x + 1, z; (ix) x + 1, y + 1, z; (x) x - 1, y - 1, z - 1; (xi) - y + 1, x - y, z - 1; (xii) - x + y, -x + 1, z - 1; (xiii) x, y - 1, z; (xv) - y + 1, x - y + 1/3, z - 1/6; (xvii) - x + y - 1/3, y - 2/3, z - 1/6; (xviii) x - 1/3, x - y + 1/3, z - 1/6; (xix) x - 1, y - 1, z; (xx) - y + 1, x - y, z$