Supplementary Information

The enhanced Jahn-Teller distortion boosts molybdenum trioxide superior

lithium ion storage capability

Henghan Dai,^{a,b} Jinyuan Zhou,^c Gang Qin,*^a and Gengzhi Sun*^{a,b}

^aSchool of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China ^bInstitute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China ^cSchool of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China *Corresponding Author

E-mail: qingang@hpu.edu.cn (G. Qin); iamgzsun@njtech.edu.cn (G. Z. Sun)

Contents

Figure S1. SEM and TEM images of α -MoO	3	3
Figure S2. SEM images of HI-MoO ₃ -12h and	d HI-MoO ₃ -24h	3
Figure S3. Optical photographs of α -MoO ₃	and HI-MoO ₃	3
Figure S4. EDS results of α -MoO ₃ and HI-M	loO ₃ -36h	ł
Figure S5. HRTEM images of HI-MoO ₃ -12h	and HI-MoO ₃ -24h	1
Figure S6. <i>I-V</i> curves of α -MoO ₃ nanobelts	and HI-MoO ₃ -36h	1
Figure S7. XPS full spectra of α -MoO ₃ and I	HI-MoO₃-36h	5
Figure S8. CV curves of α -MoO ₃ , GITT curve	es, and the capacitive contribution	5
Table S1. The equivalent circuit model, th(R _s), and the fitted charge transfer resistan(before and after cycling 100 times at 0.1 A	the fitted overall resistance of the cell components ce (R_{ct}) of MoO ₃ //Li and HI-MoO ₃ -36h//Li batteries $A g^{-1}$)	5 5 5

Fig. S1. (a) SEM and (b) TEM images of α -MoO₃. Inset: the side view of α -MoO₃ nanobelt.

Fig. S2. SEM images of (a) HI-MoO₃-12h and (b) HI-MoO₃-24h.

Fig. S3. Optical photographs of α -MoO₃, HI-MoO₃-12h, HI-MoO₃-24h, and HI-MoO₃-36h.

Fig. S4. EDS results of α -MoO₃ and HI-MoO₃-36h.

Fig. S5. HRTEM images of (a) HI-MoO₃-12h and (b) HI-MoO₃-24h.

Fig. S6. /-V curves of α -MoO₃ nanobelts and HI-MoO₃-36h.

Fig. S7. XPS full spectra of α -MoO₃ and HI-MoO₃-36h.

Fig. S8. (a) CV curves of first three cycles of α -MoO₃. (b) The capacitive contribution in α -MoO₃ at 1.0 mV s⁻¹. (c) The GITT discharge curves of α -MoO₃ and HI-MoO₃-36h. (d) The contribution to capacitive charge storage in HI-MoO₃-36h at 1.0 mV s⁻¹.

Rs CPE1 Wo Rct Wo	R _s (before cycling)	R _{ct} (before cycling)	R₅(after cycling)	R _{ct} (after cycling)
MoO ₃	19.9 Ω	850.0 Ω	10.6 Ω	95.6 Ω
HI-MoO ₃ -36h	8.2 Ω	241.0 Ω	5.3 Ω	72.9 Ω

Table S1. The equivalent circuit model, the fitted overall resistance of the cell components (R_s) and the fitted charge transfer resistance (R_{ct}) of MoO₃//Li and HI-MoO₃-36h//Li batteries (before and after cycling 100 times at 0.1 A g⁻¹).