Supporting information

Modulation of Photocatalytic Properties through Counter-ion Substitution: Tuning the Bandgaps of Aromatic Sulfonium Octamolybdates for Efficient Photo-degradation of Rhodamine B

MahenderSinghandChullikkattilP.Pradeep**School of Basic Science, Indian Institute of Technology Mandi, Mandi – 175005, HimachalPradesh, India.

Fax: +91 1905 267 009; Tel: +91 1905 267 045; E-mail: pradeep@iitmandi.ac.in

Table of contents

Sr. No.	Contents	Pages
1.	1 H, 13 C, and 19 F spectra of DMPST in DMSO-d ₆ .	S3
2.	HR-MS of DMPST.	S4
3.	FT-IR spectra of DMPST.	S5
4.	¹ H, ¹³ C, and ¹⁹ F spectra of CPDST in DMSO-d ₆ .	S6
5.	HR-MS of CPDST.	S7
6.	FT-IR spectra of CPDST.	S8
7.	The powder XRD patterns of hybrids 1-4 .	S9
8.	XPS atomic percentage analysis of different Mo oxidation state in hybrids	S10
	1-4.	
9.	1 H, 19 F spectra of hybrids 1 and 2 in DMSO-d ₆ .	S11
10.	1 H, 19 F spectra of hybrids 3 and 4 in DMSO-d ₆ .	S12
11.	ESI – MS (negative mode) data of hybrid 1 .	S13
12.	ESI – MS (negative mode) data of hybrid 3 .	S14
13.	ESI – MS (negative mode) data of hybrid 4 .	S15
14.	Table of crystallographic data and structure refinement parameters of	S16
	hybrid 3 .	
15.	Properties of rhodamine B (RhB) dye.	S17
16.	The control study of RhB degradation.	S18
17.	The images of hybrid 4 powder before and after reduction.	S19
18.	The XPS analysis of recycled catalyst.	S20
19.	The PXRD spectra of hybrid 4 fresh and recycled catalyst.	S21
20.	The comparison table of photocatalytic activity with reported	S22
	octamolybdate based materials.	
21.	The zeta – potential and wavelength shift of RhB during photodegradation	S23
	with different hybrid.	
22.	The zoom-in (positive mode) ESI-MS spectra of RhB degradation study.	S24-S25
23.	Schematic for plausible pathways and fragments formed during RhB dye	S26
	photodegradation using hybrid 4 .	
24.	Table for various intermediates involved in RhB dye photodegradation	S27
	their chemical composition, expected and observed m/z value.	

Fig. S1 ¹H, ¹³C, and ¹⁹F NMR spectra of DMPST in DMSO-d₆.

Fig. S2 Mass spectrum of DMPST.

Fig. S3 FT-IR spectrum of DMPST.

Fig. S4 ¹H, ¹³C, and ¹⁹F NMR spectra of CPDST in DMSO-d₆.

Fig. S5 Mass spectrum of CPDST.

Fig. S6 FT-IR spectrum of CPDST.

Fig. S7 The powder X-rays diffraction pattern of (a) hybrid **1-4** and (b) simulated and observed pattern of hybrid **3**.

Sr.	Мо	Hybrid 1	Hybrid 2	Hybrid 3	Hybrid 4
No.					
1.	Mo ⁶⁺ 3d _{5/2} (%)	48.46	48.82	50.90	42.12
2.	Mo ⁶⁺ 3d _{3/2} (%)	34.15	33.83	34.70	33.91
3.	Mo ⁵⁺ 3d _{5/2} (%)	15.16	14.75	12.17	19.77
4.	Mo ⁵⁺ 3d _{3/2} (%)	2.24	2.61	2.23	4.20

Table S1. XPS atomic percentage analysis of different Mo oxidation state in hybrid 1-4.

180.0 160.0 140.0 120.0 100.0 80.0 60.0 40.0 20.0 0 -20.0 -40.0 -60.0 -80.0 -100.0 -120.0 -140.0 -160.0 -180.0

Fig. S9 ¹H, ¹⁹F NMR spectra of hybrid 2 in DMSO-d₆.

160.0 140.0 120.0 100.0 80.0 60.0 40.0 20.0 0 -20.0 -40.0 -60.0 -80.0 -100.0 -120.0 -140.0 -160.0

Fig. S10 ¹H, ¹⁹F NMR spectra of hybrid 3 in DMSO-d₆.

Fig. S11 ¹H, ¹⁹F NMR spectra of hybrid 4 in DMSO-d

Fig. S12 ESI – MS (negative mode) spectra of hybrid 1 recorded in acetonitrile.

|--|

Sr. No.	lon (hybrid 1)	m/Z calculated	m/Z observed
1.	(H)[Mo ₄ O ₁₃] ¹⁻	592.76	592.65
2.	(Na)[Mo ₄ O ₁₃] ¹⁻	614.74	614.64
3.	(K)[Mo ₄ O ₁₃] ¹⁻	630.85	630.61
4.	(DMTS)[Mo ₄ O ₁₃] ¹⁻	745.02	745.74
5.	(DMTS) ₃ [Mo ₈ O ₂₆] ¹⁻	1643.30	1643.58

Fig. S13 ESI – MS (negative mode) spectra of hybrid 3 recorded in acetonitrile.

Sr. No.	lon (hybrid 3)	m/Z calculated	m/Z observed
1.	(H)[Mo ₄ O ₁₃] ¹⁻	592.76	592.65
2.	(Na)[Mo ₄ O ₁₃] ¹⁻	614.74	614.70
3.	(K)[Mo ₄ O ₁₃] ¹⁻	630.85	630.67
4.	(CPDS)[Mo ₄ O ₁₃] ¹⁻	765.43	765.78
5.	(CPDS)(Na)[HM04O13] ¹⁻ .5H2O	879.51	879.56
6.	(CPDS)(Na ₂)[Mo ₈ O ₂₆] ¹⁻	1403.17	1403.49

	Table S3. Detailed	assignment of ma	ss spectral data	for hybrid 3.
--	--------------------	------------------	------------------	---------------

Fig. S14 ESI – MS (negative mode) spectra of hybrid 4 recorded in acetonitrile.

Sr. No.	lon (hybrid 4)	m/Z calculated	m/Z observed
1.	(H)[Mo ₄ O ₁₃] ¹⁻	592.76	592.69
2.	(Na)[Mo ₄ O ₁₃] ¹⁻	614.74	614.68
3.	(K)[Mo ₄ O ₁₃] ¹⁻	630.85	630.65
4.	(FPDS)[Mo ₄ O ₁₃] ¹⁻	759.00	759.78
5.	(FPDS)(Na)[HM04O13] ¹⁻ .5H2O	873.07	873.54

 Table S4. Detailed assignment of mass spectral data for hybrid 4.

Empirical formula	C ₃₂ H ₄₄ Cl ₄ Mo ₈ O ₂₈ S ₄
Formula weight	1914.214
Temperature/K	150.01(11)
Crystal system	monoclinic
Space group	P21/c
a/Å	13.7572(4)
b/Å	19.9652(6)
c/Å	10.5884(3)
α/°	90.00
β/°	108.704(3)
γ/°	90.00
Volume/Å ³	2754.68(15)
Z	2
$D_c (mg m^{-3})$	2.308
µ/mm ⁻¹	2.188
F(000)	1831.4
Crystal size/mm ³	0.248 × 0.179 × 0.122
Radiation	Μο Κα (λ = 0.71073)
20 range for data collection/°	3.74 to 56.74
Index ranges	-18 ≤ h ≤ 12, -20 ≤ k ≤ 26, -9 ≤ 1 ≤ 13
Reflections collected	9379
Independent reflections	5955 [R _{int} = 0.0370, R _{sigma} = 0.0691]
Data/restraints/parameters	5955/0/350
Goodness-of-fit on F ²	1.041
Final R indexes [I>=2σ (I)]	R ₁ = 0.0367, wR ₂ = 0.0705
Final R indexes (all data)	$R_1 = 0.0566$, $wR_2 = 0.0894$
Largest diff. peak and hole (e. Å-3)	0.91/-1.06

 Table S5. Crystallographic data and structure refinement parameters of hybrid 3·2H₂O.

 Table S6. Properties of rhodamine B (RhB) dye.

Parameter	Value
Name of dye	Rhodamine B
Abbreviation	RhB
Color index number	45170
C. I. name	Basic Violet 10
Molecular formula	$C_{28}H_{31}N_2O_3Cl$
Molecular weight	479.02 g/mol
Туре	Cationic
$\lambda_{ m max}$	553 nm
Chemical structure	$ \begin{array}{c} \bullet = 0 \\ \bullet = N \\ \bullet = H \\ \end{array} $

Fig. S15 The control experiment for RhB removal with (a) hybrid **4** without irradiation of UV – light, (b) with tetrabutylammonium octamolybdate hybrid (TBA)₄[Mo₈O₂₆] in the presence of UV – light and (c) the comparison of amount of RhB concentration change with hybrid **4** with or without UV – light and with (TBA)₄[Mo₈O₂₆] hybrid in the presence of UV - light .

Fig. S16 The images of hybrid **4** sample powders (a) fresh sample and (b) after keeping for 2 h in DI water under UV – irradiation.

Fig. S17 The XPS spectra of hybrid **4** (a and c) fresh catalyst and (b-d) recycled catalyst showing deconvoluted Mo and S peaks.

Fig. S18 The PXRD spectra of hybrid 4, fresh and recycled catalyst.

Table S7. Comparison of the photocatalytic activity of hybrid **4** with several otheroctamolybdate base photocatalysts for RhB photodegradation.

Sr.	Photocatalyst	Radiation	Time	Total	Ref.
No.		source	(min)	degradation (%)	
1.	$[Co(btrp)_2(H_2O)_2(\beta -$	Simulate sunlight –	435	94.08	1
	Mo ₈ O ₂₆) _{0.5}]H ₂ O	Xe lamp irradiation			
		(5000 LUX)			
2.	[Co(HL) ₂ (β-Mo ₈ O ₂₆)]	UV-irradiation – Hg	180	Very low	2
		lamp (125 W)			
3.	[Cu ₃ (TPMA) ₂ (1,3-	UV irradiation Hg	180	70	3
	ttb)2(β-Mo8O26)]·H2O	lamp (100 W)			
4.	[Cu ^{II} ₄ (btmc)(ctcm) ₄ (β	UV irradiation	120	51.5	4
	-Mo ₈ O ₂₆)]·[β-				
	Mo ₈ O ₂₆]· H ₂ O				
5.	[Cu(4-Hdpyp) ₂ (β-	UV light irradiation	180	59.4	5
	Mo ₈ O ₂₆)(H ₂ O) ₂]·4H ₂	– Hg lamp (125 W)			
	0				
6.	(FPDS) ₄ [Mo ₈ O ₂₆] –	UV irradiation – Hg	120	84.4	This
	Hybrid 4	lamp (8 W)			work

Fig. S19 (a) Zeta potential of different hybrids at 4.65 pH and (b) maximum absorption wavelength shift of RhB as a function of degradation percentage with different POM – hybrids.

Fig. S20 Zoom in ESI – MS spectra (positive ion mode) of photodegraded RhB dye at (a) 30 min showing the presence of intermediate i3 or i4, i-5, i6 and (b) 60 min showing the presence of intermediate i7 or i8 and i9.

Fig. S21 Zoom in ESI – MS spectra (positive ion mode) of photodegraded RhB dye at 60 min showing the presence of intermediate (c) i10, i11 and (d) i12.

Scheme S1 Plausible pathways and fragments formed during RhB dye photodegradation using hybrid **4**.

Table S8. Various intermediates involved in RhB dye photodegradation their chemicalcomposition, expected and observed m/Z value.

Sr.	Intermediate	Chemical formula	Expected	Observed
No.			mass (m/Z)	mass (m/Z)
1.	(i1)	$[C_{28}H_{31}N_2O_3]^+$	443.233	443.281
2.	(i2)	$[C_{26}H_{27}ON_2O_3]^+$	415.202	415.237
3.	(i3) or (i4)	$[C_{24}H_{23}N_2O_3]^+$	387.170	387.199
4.	(i5)	$[C_{22}H_{19}N_2O_3]^+$	359.139	359.341
5.	(i6)	$[C_{20}H_{15}N_2O_3]^+$	331.108	331.306
6.	(i7 or i8)	$[C_8H_6O_4H]^+$	167.027	167.055
7.	(i9)	[C7H6O4H] ⁺	155.027	155.068
8.	(i10)	$[C_4H_6O_4H]^+$	119.100	119.083
9.	(i11)	$[C_4H_2O_4H]^+$	115.060	115.022
10.	(i12)	$[C_4H_6O_2H]^+$	87.100	87.023

References

- 1. J. Chi, M. Fan, Z. Su, X. Li, J. Sun, C. Zhou and X. Hu, Octamolybdate-based hybrid constructed by flexible bis-triazole ligands: synthesis, photocatalytic and electrochemical properties, *New J. Chem.*, 2020, **44**, 13524-13528.
- 2. L. Li, X. Wang, N. Xu, Z. Chang, G. Liu, H. Lin and X. Wang, Four octamolybdate complexes constructed from a quinoline–imidazole–monoamide ligand: structures and electrochemical, photocatalytic and magnetic properties, *CrystEngComm.*, 2020, **22**, 8322-8329.
- 3. H. Guo, C. Gong, X. Zeng, H. Xu, Q. Zeng, J. Zhang, Z. Zhong and J. Xie, Isopolymolybdate-based inorganic–organic hybrid compounds constructed by multidentate N-donor ligands: syntheses, structures and properties, *Dalton Trans.*, 2019, **48**, 5541-5550.
- 4. C. Wang, J. Ying, H.-c. Mou, A.-x. Tian and X.-l. Wang, Multi-functional photoelectric sensors based on a series of isopolymolybdate-based compounds for detecting different ions, *Inorg. Chem. Front.*, 2020, **7**, 3882-3894.
- 5. X. Wang, J. Sun, H. Lin, Z. Chang, X. Wang and G. Liu, A series of Anderson-type polyoxometalate-based metal–organic complexes: Their pH-dependent electrochemical behaviour, and as electrocatalysts and photocatalysts, *Dalton Trans.*, 2016, **45**, 12465-12478.