Supplementary Material

One-pot synthesis of stable and functional hydrophilic CsPbBr₃ perovskite quantum dots for "turn-on" fluorescence detection of *Mycobacterium tuberculosis*

Xue Jiang,^a Hongwei Zeng,^a Changyuan Duan,^a Qianfang Hu,^b Qiaomin Wu,^a Yang Yu ^a and Xiaolan Yang,^{*a}

^a Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, College of

Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China

^b Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital, Chongqing

Medical University, Chongqing 400042, China

* Corresponding author: E-mail address: xiaolanyang666@cqmu.edu.cn

Note 1. Optimization of conditions of the biosensing platform.

Note 1.1. MoS₂ NSs concentration

To achieve a better analytical performance, we first determined the effect of the MoS₂ NS concentration. MoS₂ NSs solutions with different concentrations were incubated with a CsPbBr₃ QD-DNA solution at 1 mg mL⁻¹. As shown in Fig. S5a, the FL intensity ratios, F/F0 (where F and F0 referred to the FL intensity of CsPbBr₃ QDs-DNA in the presence and absence of MoS₂ NSs, respectively), decreased gradually with increasing concentrations of MoS₂ NSs from 0.2 to 2.0 µg mL⁻¹, but increased when the concentration of MoS₂ NSs exceeded 2.0 µg mL⁻¹. This reversed phenomenon can be attributed to the aggregation of MoS₂ NSs. Therefore, 2.0 µg mL⁻¹ was chosen for DNA detection.

Note 1.2. Adsorption and hybridization times

The FL intensity ratio, F/F0, corresponding to the adsorption time between ssDNA and MoS₂ NSs from 5 to 60 min is shown in Fig. S5b. There was a significant decrease in the fluorescence of CsPbBr₃ QDs-DNA with increasing adsorption time, and it reached a plateau at 40 min. To optimize the hybridization time, the CsPbBr₃ QDs-DNA solution was incubated with the target sequence for different times prior to the addition of MoS₂ NSs (Fig. S5c). The FL intensity ratio, F/F0 (where F and F0 refer to the FL intensity of the CsPbBr₃ QDs-DNA/MoS₂ NSs in the presence and absence of the target sequence, respectively), gradually increased with increasing incubation time and remained stable for approximately 30 min. Therefore, adsorption and hybridization times of 40 and 30 min, respectively, were used to detect the target sequence.

Fig. S1 Schematic diagram of the synergy of NH₂-PEG-COOH, PFOTES and OAm on CsPbBr₃-COOH QDs.

Fig. S2 The stability of FL intensity of OAm/PEG-CsPbBr3 QDs in aqueous solution.

Fig. S3 The stability of CsPbBr₃-COOH QDs in different pH solutions. (a) Fluorescence emission spectra of CsPbBr₃-COOH QDs solution (0.5 mg mL⁻¹) diluted by different pH solutions (pH=5.3, 7.0, 7.35, 7.8, 8.5). (b) The stability of CsPbBr₃-COOH QDs solution diluted by different pH solutions.

Fig. S4 (a) TEM images of CsPbBr₃ QDs-DNA. (b) Fluorescence spectra of CsPbBr₃-COOH QDs (black), CsPbBr₃ QDs-DNA (red), the mixture of CsPbBr₃-COOH QDs and EDC (green) and the mixture of CsPbBr₃-COOH QDs and NHS (purple). (c) Absorption spectra of of CsPbBr₃-COOH QDs (black), the mixture of CsPbBr₃-COOH QDs and EDC (red) and the mixture of CsPbBr₃-COOH QDs and NHS (green).

Fig. S5 Optimization of the experimental conditions. (a) The effect of the MoS₂ NS concentrations with the final concentration of CsPbBr₃ QDs-DNA fixed at 1.0 mg mL⁻¹. (b) The effect of adsorption time. (c) The effect of hybridization time between CsPbBr₃ QDs-DNA and target. CsPbBr₃ QDs-DNA: 1.0 mg mL⁻¹; MoS₂ NSs: 2.0 μg mL⁻¹. Error bars represented the standard deviation of three measurements.

Fig. S6 Linear response of FL intensity to T_r concentrations. (a) Fluorescence spectra of CsPbBr₃ QDs-DNA2/MoS₂ NSs biosensing platform in the presence of T_r from 1.0 to 5.0 nM. (b) Calibration curves for T_r detection.

Oligonucleotides	Sequence $(5' \rightarrow 3')$
ssDNA	NH ₂ -C ₆ -GTCATTGCGTCATTTCCTTCGATT
Target: Mtb DNA	AATCGAAGGAAATGACGCAATGAC
ssDNA 2	NH2-C6-GCGCCGACTGTTGGCGCTGGGGGCC
Tr	GGCCCCAGCGCCAACAGTCGGCGC
M2: two-base mismatched target	AATCGAAGGAAGTGACGCACTGAC
M4: four-base mismatched target	ACTCGAAGGTAGTGACGCACTGAC
R: random sequence	GTGTCGTCTTCAGAATACCATGCT

Table S1. DNA sequences for experiments.