Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Electronic Supplementary Information

Diboration of Alkenes and Alkynes with a Carborane-fused Four-Membered Boracycle Bearing an Electron-Precise B-B Bond

Minling Zhong, Jie Zhang, Zhenpin Lu* and Zuowei Xie*

Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China E-mail: zxie@cuhk.edu.hk

Table of Contents

Experimental Section	S2
Proposed reaction mechanism for the formation of 6	S7
Crystal Data	S8
Computational Data	S11
NMR spectra	S20
References	S55

Experimental Section

General Procedure. All operations were carried out under a dry argon atmosphere using standard Schlenk and glovebox techniques. All organic solvents were dried and distilled by standard methods prior to use. ¹H, ¹³C and ¹¹B NMR spectra were recorded on Bruker DPX 400/500 spectrometer at 400/500, 100/125 and 128/160 MHz, respectively. All chemical shifts were reported in δ unit with references to the residual solvent resonances of the deuterated solvents for proton and carbon chemical shifts, to external BF₃·OEt₂ (0.00 ppm) for boron chemical shifts. NMR multiplicities are abbreviated as follows: s = singlet, d = doublet, q = quartet, m = multiplet, br = broad signal. Compound B₂Br₄(SMe₂)₂¹ was prepared according to literature procedures. All other chemicals were purchased from either Aldrich, J&K or Acros Chemical Co. and used as received unless otherwise specified.

Preparation of 1,2-[B2Br2(SMe2)2]-1,2-C2B10H10 (1). To a toluene solution (25 mL) of o-C₂B₁₀H₁₂ (691.0 mg, 4.8 mmol) was slowly added via syringe n-BuLi (1.6 M in n-hexane, 6.0 mL, 9.6 mmol) at 0 °C under stirring. The reaction mixture was allowed to slowly warm to room temperature and stirred overnight, to which was slowly added via cannula a toluene solution (25 mL) of B2Br4(SMe2)2 (1582.0 mg, 3.4 mmol). The reaction mixture was heated and stirred at 80 °C overnight. The formed inorganic salts were removed by filtration, the residue was extracted with warm toluene (3×40 mL). All the toluene solutions were combined and concentrated to about 3 mL, from which compound 1 was isolated as a pale-yellow powder (777.0 mg, 52% according to $B_2Br_4(SMe_2)_2$) via filtration. X-ray quality crystals of 1 were obtained by slow evaporation from a toluene solution at room temperature. ¹H NMR (400 MHz, C₆D₆): δ 1.35 ppm (s,12H, S(CH₃)₂). ${}^{13}C{}^{1}H{}$ NMR (125 MHz, C₆D₆): δ 21.10 (S(CH₃)₂), 18.67 ppm (S(CH₃)₂); cage C atoms were not observed. ¹¹B NMR (160 MHz, C₆D₆): δ -1.29 (d, $J_{BH} = 144.1$ Hz, 3B), -3.05 (s, 2B), -6.34 (d, $J_{BH} = 151.4$ Hz, 3B), -9.58 ppm $(d, J_{BH} = 167.1 \text{ Hz}, 4B)$. HRMS (ESI-MS): calcd for C₂H₁₀B₁₂Br₂ [M+CH₃OH-H]⁻: 355.05088. Found: 355.05080. M.p.: 201.5-203.7 °C.

Preparation of 1,2-[B₂Br₂C₂H₄(SMe₂)₂]-1,2-C₂B₁₀H₁₀ (3a). In a 100 mL J-Young tube, a toluene solution (20 mL) of 1 (90.0 mg, 0.2 mmol) was subjected to ethylene (1 atm) at room temperature. The reaction mixture was then stirred at room temperature overnight. After filtration, the volatiles were removed in vacuo. Compound 3a was isolated as a white powder (79.0 mg, 83%). X-ray quality crystals of **3a** were obtained by slow evaporation from a toluene solution at room temperature. ¹H NMR (400 MHz, CD₂Cl₂): δ 2.39 (s, 12H, S(CH₃)₂), 0.93 ppm (s, 4H, B-CH₂). ¹³C {¹H} NMR (125 MHz, CD₂Cl₂): δ 82.10 (cage *C*), 23.52 (S(CH₃)₂), 21.39 (S(CH₃)₂), 17.07 ppm (B-CH₂). ¹¹B NMR (128 MHz, CD₂Cl₂): δ 4.40 (s, 2B), -2.10 (d, *J*_{BH} = 146.7 Hz, 2B), -5.61 (d, *J*_{BH} = 149.8 Hz, 2B), -9.58 (unresolved, 4B), -11.09 ppm (unresolved, 2B). HRMS (ESI-MS): calcd for C₄H₁₄B₁₂Br₂ [M+Cl]⁻: 387.03280. Found: 387.03269. M.p.: 187.5–188.5 °C.

Preparation of 1,2-[B₂Br₂C₈H₈(SMe₂)₂]-1,2-C₂B₁₀H₁₀ (3b). To a toluene solution (10 mL) of 1 (45.0 mg, 0.1 mmol) was added a toluene solution (5 mL) of styrene (13.0 mg, 14 μL, 0.12 mmol) at room temperature. The reaction mixture was heated and stirred at 45 °C overnight. After removal of the precipitates, the volatiles were removed in vacuo. The residue was washed by hexane (2×2mL). Compound 3b was isolated as a white powder (50.0 mg, 91%). ¹H NMR (400 MHz, CD₂Cl₂): δ 7.35 (brs, 2H, aromatic *H***), 7.23 (t, J = 7.9 Hz, 2H, aromatic** *H***), 7.13 (m, 1H, aromatic** *H***), 2.63 (d, J = 12.9 Hz, 1H, B-C***H***), 2.20 (brs, 12H, S(C***H***₃)₂), 1.60 (t, J = 13.3 Hz, 1H, B-C***H***₂), 0.87 ppm (d, J = 13.5 Hz, 1H, B-C***H***₂). ¹³C{¹H} NMR (100 MHz, CD₂Cl₂): δ 148.82 (aromatic** *C***), 129.33 (aromatic** *C***), 128.42 (aromatic** *C***), 126.04 (aromatic** *C***), 34.04 (B-CH), 29.24 (B-CH₂), 22.28 ppm (S(CH₃)₂); cage C were not observed. ¹¹B NMR (128 MHz, CD₂Cl₂): δ 6.65 (s, 1B), 3.84 (s, 1B), -1.98 (d,** *J***_{BH} = 148.6 Hz, 2B), - 5.77 (d,** *J***_{BH} = 148.9 Hz, 2B), -9.93 ppm (unresolved, 6B). HRMS (ESI-MS): calcd for**

C₁₀H₁₈B₁₂Br₂ [M+C1]⁻: 463.06441. Found: 463.06490. M.p.: 203.5–204.9 °C.

Preparation of $1,2-[B_2Br_2C_6H_{12}(SMe_2)_2]-1,2-C_2B_{10}H_{10}$ (3c). To a toluene solution (10 mL) of 1 (45.0 mg, 0.1 mmol) was added a toluene solution (5 mL) of 1hexene (10.0 mg, 15 μ L, 0.12 mmol) at room temperature. The reaction mixture was heated and stirred at 45 °C overnight. After removal of the precipitates, the volatiles were removed in vacuo. The residue was washed by hexane $(2 \times 2mL)$. Compound **3c** was isolated as a pale yellow powder (36.0 mg, 77%). X-ray quality crystals of **3c** were obtained by slow evaporation from a toluene solution at room temperature. ¹H NMR (400 MHz, C₆D₆): δ 1.66-1.44 (m, 10H, S(CH₃)₂, CH₂-CH₂CH₂CH₃, 2H of CH₂-CH₂-CH₃), 1.34 (m, 2H of CH₂-CH₂-CH₃) 1.08 (m, 1H, B-CH), 0.99 (t, J = 6.9 Hz, 3H, CH₂-CH₃), 0.86 ppm (m, 2H, B-CH₂). ${}^{13}C{}^{1}H{}$ NMR (125 MHz, C₆D₆): δ 83.26 (cage C), 81.74 (cage C), 35.17 ((CH2-CH2-CH2-CH3), 30.72 (CH2-CH2-CH3), 26.15 (B-CH), 24.25 (B-CH2), 23.61 (CH2-CH2-CH3), 19.93 (S(CH3)2), 14.61 ppm (CH2-¹¹B NMR (128 MHz, C₆D₆): δ 14.84 (s, 1B), 3.61 (s, 1B), -1.23 (m, unresolved, CH₃). 2B), -5.46 (d, J_{BH} = 148.6 Hz, 2B), -9.90 ppm (br, unresolved, 6B). HRMS (ESI-MS): calcd for C₈H₂₂B₁₂Br₂ [M+Cl]⁻: 443.09619. Found: 443.09547. M.p.: 150.9–152.0 °C.

Preparation of 1,2-[B₂Br₂C₆H₁₀(SMe₂)₂]-1,2-C₂B₁₀H₁₀ (3d). To a toluene solution (10 mL) of 1 (45.0 mg, 0.1 mmol) was added a toluene solution (5 mL) of cyclohexene (10.0 mg, 12 μ L, 0.12 mmol) at room temperature. The reaction mixture was heated and stirred at 80 °C overnight. After removal of the precipitates, the volatiles were removed in vacuo. The residue was washed by hexane (2×2mL). Compound 3d was isolated as a white powder (38.0 mg, 80%). ¹H NMR (500 MHz, CD₂Cl₂): δ 2.56 (s, 3H, S(CH₃)₂), 2.46 (br, 1H, CH₂), 2.34 (s, 3H, S(CH₃)₂), 1.83(s, 1H, B-CH), 1.73 (m, 1H, CH₂), 1.68 (m, 1H, CH₂). ¹³C{¹H} NMR (125 MHz, CD₂Cl₂): δ 79.92 (cage C),

75.20 (cage C), 40.63 (B-C), 38.49 (B-C), 32.37 (*C*H₂), 31.42 (*C*H₂), 28.88 (*C*H₂), 25.50 (*C*H₂), 23.36 (S(*C*H₃)₂), 22.17 ppm (S(*C*H₃)₂). ¹¹B NMR (160 MHz, CD₂Cl₂): δ 75.85 (s, 1B), 4.37 (s, 1B), 0.48 to -0.17 (unresolved, 2B), -5.34 (unresolved, 1B), -6.57 (unresolved, 1B), -8.76 (unresolved, 5B), -11.82 ppm (d, *J*_{BH} = 174.1 Hz, 1B). HRMS (ESI-MS): calcd for C₈H₂₀B₁₂Br₂ [M+H₂O-H]⁻: 423.11420. Found: 423.11304. M.p.: 183.1–184.2 °C.

Preparation of 1,2-[B₂Br₂C₇H₁₀(SMe₂)₂]-1,2-C₂B₁₀H₁₀ (3e). To a benzene solution (10 mL) of 1 (45.0 mg, 0.1 mmol) was added a toluene solution (5 mL) of norbornene (240.0 mg, 0.25 mmol) at room temperature. The reaction mixture was heated and stirred at 60 °C overnight. After cooling down to room temperature, colorles crystals were generated immediately. The supernatant was removed with a syringe, and the volatiles in the residue were removed in vacuo. Compound 3e was isolated as a white solid (54.0 mg, 99 %). Owing to poor solubility of **3e** in C₆D₆ or CD₂Cl₂, ¹³C NMR spectrum was not feasible. ¹H NMR (400 MHz, CD₂Cl₂): δ 2.58 (br, 2H), 2.35 (br, 12H, S(CH₃)₂), 1.62 (d, J = 7.9 Hz, 2H), 1.31 (d, J = 7.3 Hz, 2H), 1.25 ppm (d, J = 7.1 Hz, 2H). ¹¹B NMR (160 MHz, C₆D₆): δ -0.36 (d, *J*_{BH} = 138.4 Hz, 2B), -7.04 (d, *J*_{BH} = 125.2 Hz, 4B), -9.93 (unresolved, 4B), -11.72 ppm (d, *J*_{BH} = 163.0 Hz, 2B). HRMS (ESI-MS): calcd for C₂H₁₀B₁₂Br₂ [M+H₂O-H]⁻: 435.11426. Found: 435.11382. M.p.: 202.9–204.3 °C.

Preparation of 1,2-[B₂Br₂C₈H₁₄(SMe₂)]-1,2-C₂B₁₀H₁₀ (5a). To a toluene solution (20 mL) of 1 (90.0 mg, 0.2 mmol) was added a toluene solution (5 mL) of 4-octyne (23.0 mg, 31 \muL, 0.2 mmol) at room temperature. The reaction mixture was heated and stirred at 80 °C overnight. After removal of the precipitates, the volatiles

were removed in vacuo. The residue was washed by hexane (2 × 2 mL). Compound **5a** was isolated as a yellow powder (72.0 mg, 77%). X-ray quality crystals of **5a** were obtained by recrystallization from toluene at -30 °C. ¹H NMR (400 MHz, C₆D₆): δ 2.25 (m, 4H, CH₂), 1.33 (m, 4H, CH₂), 1.23 (s, 6H, S(CH₃)₂), 0.92 ppm (t, J = 7.2 Hz, 6H, CH₃). ¹³C{¹H} NMR (125 MHz, C₆D₆): δ 37.69 (CH₃), 24.44 (CH₂), 21.22 (S(CH₃)₂), 14.92 ppm (CH₂); cage C were not observed. ¹¹B NMR (160 MHz, C₆D₆): δ 34.39 (s, 2B), 1.05 (d, *J*_{BH} = 139.6 Hz, 2B), -7.76 (unresolved, 2B), -9.15 ppm (unresolved, 6B). HRMS (ESI-MS): calcd for C₁₀H₂₄B₁₂Br₂ [M+H₂O-H]⁻: 451.14561. Found: 451.14539. M.p.: 128.9–131.4 °C.

Preparation of 1,2-[B₂Br₂C₁₄H₁₀(SMe₂)]-1,2-C₂B₁₀H₁₀ (5b). To a toluene solution (20 mL) of 1 (45.0 mg, 0.1 mmol) was added a toluene solution (5 mL) of diphenylacetylene (27.0 mg, 0.15 mmol) at room temperature. The reaction mixture was heated and stirred at 80 °C overnight. After removal of the precipitates, the volatiles were removed in vacuo. The residue was washed by hexane (2×3mL). Compound **5b** was isolated as an orange powder (43.0 mg, 77%). ¹H NMR (400 MHz, C₆D₆): δ 6.82 (m, 6H, aromatic *H*), 6.74 (m, 4H, aromatic *H*), 1.15 ppm (s, 6H, S(C*H*₃)₂). ¹³C {¹H} NMR (125 MHz, C₆D₆): δ 143.25 (aromatic *C*), 129.08 (aromatic *C*), 127.63 (aromatic *C*), 126.54 (aromatic *C*), 21.75 ppm (S(CH₃)₂), cage C were not observed. ¹¹B NMR (128 MHz, CD₂Cl₂): δ 28.66 (brs, 2B), -0.55 (d, *J*_{BH} = 149.3 Hz, 2B), -8.08 (unresolved, 2B), -10.19 ppm (unresolved, 6B). HRMS (ESI-MS): calcd for C₁₆H₂₀B₁₂Br₂ [M+H₂O-H]⁻: 519.11463. Found: 519.11368. M.p.: 155.5–157.1 °C.

Preparation of 1,2-[B₂C₁₆H₃₆Br₂Si₄]-1,2-C₂B₁₀H₁₀ (6). To a toluene solution (20 mL) of 1 (45.0 mg, 0.1 mmol) was added a toluene solution (5 mL) of bis(trimethylsilyl)acetylene (25.0 mg, 34 \muL, 0.15 mmol) at room temperature. The

reaction mixture was heated and stirred at 100 °C overnight. After removal of the precipitates, the volatiles were removed in vacuo. The residue was washed by hexane (2×3mL). Compound **6** was isolated as a pale-yellow powder (56.0 mg, 85%). X-ray quality crystals of **6** were obtained by slow evaporation from a toluene solution at room temperature. ¹H NMR (400 MHz, C₆D₆): δ 1.24 (s, 3H, B-CH₃), 0.99 (s, 3H, B-CH₃), 0.65 (s, 6H, Si(CH₃)₂Br), 0.62 (s, 6H, Si(CH₃)₂Br), 0.13 ppm (s, 18H, Si(CH₃)₃). ¹³C {¹H} NMR (125 MHz, C₆D₆): δ 207.89 (C=C=C), 85.34 (C=C(TMS)₂), 18.26 (B-CH₃), 12.03 (B-CH₃), 9.05 (Si(CH₃)₂Br), 8.27 (Si(CH₃)₂Br), 1.27 ppm (Si(CH₃)₃), cage *C* were not observed. ¹¹B NMR (160 MHz, C₆D₆): δ 73.95 (brs, 1B), 69.17 (brs, 1B), 2.32 (unresolved, 1B), 1.31 (unresolved, 1B), -6.72 (unresolved, 3B), -8.54 to -9.66 (unresolved, 4B), -12.80 ppm (unresolved, 1B). HRMS (FT-MS): calcd for C₁₈H₄₆B₁₂Br₂Si₄ [M]⁻: 664.22322. Found: 664.22411. M.p.: 132.9 °C(decom.).

Proposed reaction mechanism for the formation of 6²

Figure S1. Proposed reaction mechanism for the formation of 6

Crystal Data

X-ray Structure Determination. Single crystals were immersed in Paraton-N oil and sealed under argon in thin-walled glass capillaries. All data were collected at 296 K or 173 K on a Bruker Kappa ApexII Duo Diffractometer using Mo-K α radiation. An empirical absorption correction was applied using the SADABS program.³ All structures were solved by direct methods and subsequent Fourier difference techniques and refined anisotropically for all non-hydrogen atoms by full-matrix least squares calculations on F^2 using the SHELXTL program package.⁴ All hydrogen atoms were geometrically fixed using the riding model. Crystal data and details of data collection and refinement are given in Table S1. Details of the crystal structures were deposited in the Cambridge Crystallographic Data Centre with CCDC 2104196-2104201 for **1**, **3a**, **3c**, **3e**, **5a** and **6**, respectively.

Compound	1	$3a \cdot 0.5$ toluene	3c
Formula	$C_{6}H_{22}B_{12}Br_{2}S_{2}$	$C_{11.5}H_{30}B_{12}Br_2S_2$	$C_{10}H_{28}B_{12}Br_2S$
M_W	447.89	522.01	469.92
Crystal size (mm ³)	0.40 x 0.30 x 0.20	0.50 x 0.40 x 0.30	0.40 x 0.30 x 0.20
Crystal system	monoclinic	triclinic	triclinic
Space Group	I2/a	P-1	P-1
a, Å	13.0965(6)	7.1932(5)	10.2053(6)
b, Å	10.4041(5)	9.4805(6)	10.4663(7)
c, Å	14.1531(6)	18.3732(12)	11.7394(7)
a, deg	90	76.724(2)	90.808(2)
β, deg	99.845(3)	86.032(2)	111.709(2)
γ, deg	90	73.8340(2)	108.033(2)
V, Å ³	1900.06(15)	1171.24(13)	1095.94(12)
Z	4	2	2
D_{calcd} Mg/m ³	1.566	1.480	1.424
Radiation (Å)	0.71073	0.71073	0.71073
2θ range, deg	5.030 to 55.844	5.712 to 50.496	4.566 to 50.496
μ , mm ⁻¹	4.468	3.636	3.786
F(000)	880	522	468
No. of obsd reflns	2278	4236	3945
No. of params refnd	103	262	226
Goodness of fit	1.023	1.051	1.043
R1	0.0254	0.0418	0.0417
wR2	0.0625	0.1094	0.1025

Table S1. Crystal Data and Summary of Data Collection and Refinement for 1,3a·0.5toluene, 3c, 3e, 5a and 6.

Compound	3e	5a	6
Formula	$C_{13}H_{31}B_{12}Br_2S_2$	$C_{12}H_{30}B_{12}Br_2S$	$C_{18}H_{46}B_{12}Br_2Si_4$
M_{W}	541.04	495.96	664.45
Crystal size (mm ³)	0.50 x 0.40 x 0.30	0.50 x 0.40 x 0.30	0.50 x 0.40 x 0.30
Crystal system	orthorhombic	monoclinic	triclinic
Space Group	Pnma	Cc	P-1
a, Å	13.4739(3)	9.8716(5)	9.2458(3)
b, Å	14.7910(3)	26.4281(15)	13.6832(5)
c, Å	11.6500(3)	9.6977(5)	14.5973(5)
α, deg	90	90	75.7550(10)
β, deg	90	114.1930(10)	85.9640(10)
γ, deg	90	90	87.7300(10)
V, Å ³	2321.76(9)	2307.8(2)	1785.04(11)
Z	4	4	2
$D_{calcd} \mathrm{Mg/m^3}$	1.551	1.427	1.236
Radiation (Å)	0.71073	0.71073	1.54178
2θ range, deg	4.622 to 50.496	5.194 to 50.496	6.666 to 136.840
μ , mm ⁻¹	3.672	3.600	4.216
F(000)	1088	992	680
No. of obsd reflns	2151	4155	6401
No. of params refnd	139	244	350
Goodness of fit	1.054	1.035	1.090
R1	0.0239	0.0273	0.0528
wR2	0.0597	0.0698	0.1429

Computational Data

Geometry optimizations were carried out with the Gaussian09 program, Revision D.01⁵ at the B3LYP⁶-D3⁷/6-31++G(d,p) level of density functional theory. Frequency calculations were made to determine the characteristics of all stationary points as energy minimum or transition states and obtain thermal corrections. Intrinsic reaction coordinates (IRC)⁸ were calculated to confirm that transition states lead to relevant intermediates. The solvent effect of toluene was taken into consideration by performing single-point solvation energy calculations with the conductor-like polarizable continuum model (CPCM)⁹ using UAKS radii.

Figure S2. Energy profile calculated for the reaction of 1 with ethylene at the B3LYP-D $3/6-31++g^{**}$ level of theory.

Figure S3. Calculated ring strain energy for carborane-fused diborane at the B3LYP-D3/6-31++g** level of theory.

Cartesian coordinates:

2			
С	-1.04977300	0.15664400	0.00000000
Н	-0.53443700	-0.80069400	0.00000000
Н	-2.13649800	0.12375300	0.00000000
С	-0.38279600	1.31245100	0.00000000
Н	-0.89813200	2.26978900	0.00000000
Н	0.70392900	1.34534200	0.00000000
Me ₂ S			
S	-4.27067500	6.04322200	2.92830400
С	-4.14292600	7.86377600	2.83005500
Н	-3.35623800	8.17321300	3.52245400
Н	-3.87043200	8.18449700	1.81983700
Н	-5.08226000	8.34065800	3.12653500
С	-5.60952400	5.78881700	1.71047100
Н	-5.80146200	4.71443700	1.65671400
Н	-6.52735100	6.29623400	2.02311500
Н	-5.31203200	6.14464500	0.71921400
1			
Br	-1.46926700	6.19687900	5.03257000
S	0.32745000	6.11758800	2.31272000
С	-1.32695400	3.74416400	3.10148800
С	0.03438600	7.91113100	2.43862000
Н	-0.91683500	8.09283100	1.93606000
Н	-0.02578800	8.20100400	3.48863600
Н	0.83726300	8.43446400	1.91701900
С	1.67491300	5.87779700	3.51792500
Н	1.88970300	4.80754200	3.53592900
Н	2.55156800	6.42749800	3.17006200
Н	1.35369100	6.21649400	4.50452500
В	-1.35646500	2.42254400	4.18411000
Н	-0.92397500	2.57016000	5.27714500
В	-0.29877700	2.42258600	2.76496300
Н	0.87457900	2.57100300	2.87476800
В	-1.13324300	3.27147500	1.45128100

-0.58286000	4.00719400	0.71500500
-1.27237400	0.97761100	3.13935200
-0.76686200	-0.02759300	3.52125700
-1.12334100	1.52658800	1.44268300
-0.50133100	0.94514200	0.61487400
-1.29942600	5.38019300	3.15709700
-2.51143300	6.19694300	0.16682300
-4.30816400	6.11760700	2.88667700
-2.65378900	3.74418000	2.09784900
-4.01514500	7.91115100	2.76069400
-3.06394000	8.09289200	3.26327200
-3.95496000	8.20098000	1.71066700
-4.81804800	8.43449200	3.28224800
-5.65569400	5.87772600	1.68156300
-5.87045800	4.80746500	1.66361200
-6.53234100	6.42741900	2.02946100
-5.33454100	6.21639200	0.69493100
-2.62429100	2.42257800	1.01520400
-3.05677900	2.57021600	-0.07782800
-3.68197800	2.42260700	2.43435100
-4.85533200	2.57103800	2.32454800
-2.84750400	3.27146400	3.74804800
-3.39788000	4.00717600	4.48433600
-2.70839600	0.97762800	2.05993800
-3.21391900	-0.02756500	1.67801600
-2.85742400	1.52657700	3.75661600
-3.47944000	0.94512500	4.58441500
-2.68129900	5.38021200	2.04227200
0.98858200	2.70593600	-0.28684800
-1.33927200	0.68975500	0.33774900
-2.67130600	1.37374600	-0.49807300
-2.72134100	2.54770500	-0.64056900
-2.88286400	0.63090000	1.09517800
-3.07046300	1.30192300	2.05423300
-1.74856500	-0.72143400	1.22515200
-1.13261300	-0.95904500	2.20319300
	-0.58286000 -1.27237400 -0.76686200 -1.12334100 -0.50133100 -1.29942600 -2.51143300 -4.30816400 -2.65378900 -4.01514500 -3.06394000 -3.95496000 -3.95496000 -3.95496000 -5.87045800 -5.87045800 -5.33454100 -2.62429100 -3.05677900 -3.68197800 -2.84750400 -3.39788000 -2.70839600 -3.21391900 -2.85742400 -3.47944000 -2.68129900 0.98858200 -1.33927200 -2.67130600 -2.72134100 -2.88286400 -3.07046300 -1.74856500 -1.13261300	-0.58286000 4.00719400 -1.27237400 0.97761100 -0.76686200 -0.02759300 -1.12334100 1.52658800 -0.50133100 0.94514200 -1.29942600 5.38019300 -2.51143300 6.19694300 -4.30816400 6.11760700 -2.65378900 3.74418000 -4.01514500 7.91115100 -3.06394000 8.09289200 -3.95496000 8.20098000 -4.81804800 8.43449200 -5.65569400 5.87772600 -5.87045800 4.80746500 -6.53234100 6.42741900 -5.33454100 6.21639200 -2.62429100 2.42257800 -3.05677900 2.57021600 -3.68197800 2.57103800 -2.70839600 0.97762800 -3.21391900 -0.02756500 -2.68129900 5.38021200 -2.68129900 5.38021200 -2.67130600 1.37374600 -2.72134100 2.54770500 -2.88286400 0.63090000 -3.07046300 1.30192300 -1.74856500 -0.72143400 -1.13261300 -0.95904500

В	-4.01682300	0.22960200	-0.21119600
Н	-5.14254800	0.60659700	-0.18415300
В	-3.42322000	-1.06399300	0.87259000
Н	-4.09570100	-1.60586900	1.68696900
В	0.16296200	1.15464400	0.77413900
Br	1.44610400	-2.13646400	1.09339100
S	1.77263500	-0.26642200	-1.53296900
С	-0.92521300	-0.77050500	-0.28873600
С	3.42621300	-0.03326600	-0.80451600
Н	3.38242300	0.90156000	-0.24411100
Н	3.66513400	-0.87134600	-0.14854900
Н	4.14560300	0.05926000	-1.61995300
С	1.94393700	-1.91166100	-2.30661600
Н	0.96147300	-2.17551900	-2.70246800
Н	2.66081700	-1.82130500	-3.12520200
Н	2.26562100	-2.64758200	-1.56865500
В	-2.12119300	-1.95468500	0.00666600
Н	-1.78080000	-3.06971300	0.21579900
В	-1.92866300	-1.21769800	-1.59382200
Н	-1.45754000	-1.83053800	-2.49471800
В	-1.42564700	0.46918800	-1.36958200
Н	-0.61712100	0.99096900	-2.04656200
В	-3.55283900	-1.37082600	-0.88373300
Н	-4.35337900	-2.12809000	-1.32685000
В	-3.09666000	0.13794300	-1.73744100
Н	-3.53727300	0.45548600	-2.79308700
В	0.64012900	-0.58490500	0.06967200
С	0.05555500	1.81482300	2.45835000
Н	0.28143600	2.87193200	2.39617800
Н	-0.89409300	1.54028300	2.90337500
С	1.04240900	0.84307200	2.30514300
Н	0.89586500	-0.15559700	2.69239400
Н	2.07003500	1.11437900	2.08525500
TS			
Br	0.98396100	2.71617800	-0.26310400
С	-1.33914200	0.69299900	0.34656500
В	-2.66854500	1.38225500	-0.48826100

Н	-2.71740800	2.55696100	-0.62384600
В	-2.88406100	0.63081800	1.10120400
Н	-3.07134600	1.29697900	2.06336700
В	-1.75183400	-0.72297100	1.22653000
Н	-1.13672100	-0.96865400	2.20285800
В	-4.01527500	0.23749600	-0.21082500
Н	-5.14092100	0.61465600	-0.18513400
В	-3.42531900	-1.06248900	0.86671800
Н	-4.09997800	-1.60940900	1.67587300
В	0.14247600	1.18304200	0.80726100
Br	1.43313200	-2.17603400	1.05387700
S	1.77669400	-0.23030400	-1.51356700
С	-0.92442600	-0.76023800	-0.28556000
С	3.42634200	-0.01653600	-0.77080200
Н	3.37963400	0.90378800	-0.18728000
Н	3.66259200	-0.87174200	-0.13632400
Н	4.14929400	0.09724400	-1.58034300
С	1.95078300	-1.85538000	-2.32925800
Н	0.96680900	-2.11362200	-2.72508100
Н	2.66124700	-1.73933600	-3.15021900
Н	2.28129600	-2.60881000	-1.61335300
В	-2.12133300	-1.94786400	-0.00077600
Н	-1.78001000	-3.06366200	0.20207400
В	-1.92413100	-1.20242700	-1.59677900
Н	-1.45009700	-1.81097700	-2.49906100
В	-1.42175400	0.48304500	-1.36282300
Н	-0.61078500	1.00740200	-2.03494000
В	-3.55015700	-1.35923900	-0.89163400
Н	-4.34913400	-2.11443000	-1.34106800
В	-3.09167500	0.15386900	-1.73576800
Н	-3.52957600	0.47744700	-2.79069300
В	0.63978400	-0.59836300	0.07267200
С	0.09207200	1.77564400	2.46244600
Н	0.35593600	2.82604100	2.45905100
Н	-0.84503200	1.50819400	2.93826800
С	1.06255200	0.77842900	2.27743200
Н	0.90441200	-0.21798700	2.66447400
Н	2.09443500	1.03434000	2.05885600

INT2			
Br	-1.28175200	3.74619900	1.21731400
С	-1.56421100	0.89087900	0.39404500
В	-2.78752400	1.26294800	-0.75634600
Н	-2.90087400	2.39430300	-1.07901100
В	-3.20197300	0.74395600	0.88422800
Н	-3.59354500	1.53054300	1.67601200
В	-1.96107100	-0.43111500	1.42321500
Н	-1.52724300	-0.43493700	2.52068300
В	-4.04756300	0.03838700	-0.51280400
Н	-5.18702700	0.29243600	-0.72594200
В	-3.53703400	-0.99724300	0.85763500
Н	-4.29548600	-1.48991300	1.62645900
В	-0.61921400	1.94978900	1.06727300
Br	1.22785900	-2.72673400	0.72965800
S	1.89481000	-0.06007200	-1.06701500
С	-0.86947800	-0.62236600	0.09190200
С	3.57863100	-0.46602900	-0.49808800
Н	3.82451500	0.21229400	0.31916500
Н	3.61466400	-1.50186800	-0.15608900
Н	4.26435700	-0.29406400	-1.32976600
С	1.73834600	-1.22461900	-2.45951800
Н	0.79742500	-1.00618800	-2.96222700
Н	2.57399400	-1.04912000	-3.13965300
Н	1.73969500	-2.24890700	-2.08186900
В	-2.05255200	-1.84979800	0.36382400
Н	-1.69028200	-2.89021400	0.78264600
В	-1.62053400	-1.32363000	-1.26842600
Н	-0.96049400	-2.02198600	-1.95840300
В	-1.29406900	0.42388300	-1.22659900
Н	-0.43024000	0.95970200	-1.83016800
В	-3.33129900	-1.55927100	-0.83266600
Н	-3.95117000	-2.46632000	-1.28237000
В	-2.84898800	-0.15254500	-1.82929900
Н	-3.11286900	-0.04213800	-2.98247200
В	0.70918400	-0.77922000	0.49729700
С	0.81425200	1.62057700	1.59670600

Н	1.48952000	2.11195300	0.87372700
Н	0.99079000	2.16817300	2.53132400
С	1.16989900	0.12307700	1.73886300
Н	0.66474000	-0.28758000	2.61986100
Н	2.23792500	-0.00047500	1.94988600
3a			
Br	5.08688800	10.83836200	10.79440700
Br	5.55026200	11.81354200	16.88346300
S	8.12929400	10.58270100	12.00754400
S	2.53908500	11.11403600	15.76763800
С	5.80412900	9.36280700	13.40086600
С	4.91671900	9.58368700	14.85666300
С	6.02350400	12.08447200	13.36506100
Н	6.79972700	12.16982600	14.13909500
Н	6.14808600	12.93610500	12.68687600
С	4.63731400	12.17918200	14.04426800
Н	3.86272300	12.01360000	13.28163200
Н	4.49720900	13.19495900	14.43055200
С	8.21308800	9.45803800	10.57207700
Н	8.02523800	8.44757200	10.93219700
Н	7.44987200	9.74700400	9.84810300
Н	9.21767700	9.52496600	10.14980400
С	8.38464300	12.17411000	11.15521800
Н	8.39569100	12.95587400	11.91491200
Н	9.35258000	12.13738700	10.65202600
Н	7.57317000	12.34347900	10.44421800
С	2.22174600	12.88679300	16.05195000
Н	2.20161600	13.37829800	15.07912200
Н	1.24596100	12.98356500	16.53165400
Н	3.01380800	13.30611300	16.67620900
С	2.44662100	10.51360400	17.48877100
Н	2.71266500	9.45754600	17.48330700
Н	3.15365600	11.07451700	18.10142700
Н	1.41942200	10.64108700	17.83588300
В	4.15707300	8.89333400	13.46807700
Н	3.35448000	9.53997000	12.89646300
В	5.38378500	7.87433100	12.67400700

Н	5.40188000	7.83103100	11.49179500
В	6.87642700	8.04322100	13.60225400
Н	7.93767200	8.09320000	13.07956200
В	6.57648400	9.16957800	14.93461600
Н	7.35553700	9.98766200	15.27074700
В	3.88718000	8.23447200	15.08805800
Н	2.82407600	8.41551100	15.57695400
В	4.16624300	7.13406200	13.73139300
Н	3.28914100	6.46500800	13.29415400
В	5.86955300	6.60520400	13.82384700
Н	6.22817100	5.54103200	13.43447300
В	6.62436700	7.41610700	15.23636000
Н	7.52006300	6.94640400	15.85703300
В	5.37889900	8.41151500	16.01375500
Н	5.35499100	8.73841600	17.15061400
В	4.93979700	6.83040700	15.32278300
Н	4.61322100	5.93189400	16.02884800
В	6.16045500	10.71135400	12.55418800
В	4.51531100	11.11925700	15.23757600

BH₃

В	0.00000000	0.00000000	0.00000000
Н	0.00000000	1.19332400	0.00000000
Н	1.03344900	-0.59666200	0.00000000
Н	-1.03344900	-0.59666200	0.00000000

1-(BH2BH)-2-BH2-1,2-C2B10H10

В	-0.86344100	1.40710400	0.88599700
В	-2.23345300	0.69960900	0.00127700
В	-0.55233000	-1.47330300	0.88310100
В	-2.04356400	-1.06613300	0.00054200
В	-0.55345900	-1.47271300	-0.88415700
В	0.19448300	0.05913500	-1.43921600
В	-1.56778200	-0.12440300	1.45731100
В	0.19620800	0.05821800	1.43800800
Н	-0.80570800	2.42646300	1.48551600
Н	-3.29456200	1.23001500	0.00203500

Н	-0.28896500	-2.45806800	1.48438300
Н	-2.96895300	-1.80854900	0.00096500
Н	-0.29109800	-2.45724700	-1.48623300
Н	0.95792300	0.14636700	-2.33871300
Н	-2.14424200	-0.18628400	2.49188900
Н	0.96066800	0.14494100	2.33663700
В	-0.86445700	1.40758500	-0.88471600
Н	-0.80766800	2.42722100	-1.48386500
В	-1.56970300	-0.12341600	-1.45617800
Н	-2.14777200	-0.18449300	-2.48990300
С	0.71032400	-0.73941000	-0.00140200
С	0.51949100	0.94296200	-0.00042000
В	2.18192600	-1.28641600	-0.00037700
Н	2.27244900	-2.47823200	0.00010300
В	1.79908300	1.80854500	-0.00042600
Н	1.74767900	2.99296500	0.00095300
Н	2.89746300	1.30603500	-0.00214400
В	3.53358900	-0.32371400	0.00039400
Н	4.12334400	-0.08584300	1.01746000
Н	4.12505500	-0.08709200	-1.01594600

Figure S4. $^{11}B\{^{1}H\}$ NMR spectrum of compound 1.

Figure S5. ¹¹B NMR spectrum of compound 1.

Figure S6. ¹H NMR spectrum of compound 1.

Figure S8. ¹¹B $\{^{1}H\}$ NMR spectrum of compound 3a.

Figure S9. ¹¹B NMR spectrum of compound 3a.

Figure S10. ¹H NMR spectrum of compound 3a.

Figure S11. ${}^{13}C{}^{1}H$ NMR spectrum of compound 3a.

Figure S12. ${}^{11}B{}^{1}H{}$ NMR spectrum of compound 3b.

Figure S13. ¹¹B NMR spectrum of compound 3b.

Figure S14. ¹H NMR spectrum of compound 3b.

Figure S15. ${}^{13}C{}^{1}H$ NMR spectrum of compound 3b.

Figure S16. ¹¹B $\{^{1}H\}$ NMR spectrum of compound 3c.

Figure S17. ¹¹B NMR spectrum of compound 3c.

Figure S19. ${}^{13}C{}^{1}H$ NMR spectrum of compound 3c.

Figure S20. $^{11}B{^1H}$ NMR spectrum of compound 3d.

Figure S21. ¹¹B NMR spectrum of compound 3d.

Figure S22. ¹H NMR spectrum of compound 3d.

Figure S23. ${}^{13}C{}^{1}H$ NMR spectrum of compound 3d.

Figure S24. ¹¹B $\{^{1}H\}$ NMR spectrum of compound 3e.

Figure S25. ¹¹B NMR spectrum of compound 3e.

Figure S26. ¹H NMR spectrum of compound 3e.

Figure S27. $^{11}B{^{1}H}$ NMR spectrum of compound 5a.

Figure S28. ¹¹B NMR spectrum of compound 5a.

Figure S29. ¹H NMR spectrum of compound 5a.

Figure S31. $^{11}B{^{1}H}$ NMR spectrum of compound 5b.

Figure S32. ¹¹B NMR spectrum of compound 5b.

Figure S33. ¹H NMR spectrum of compound 5b.

Figure S34. ${}^{13}C{}^{1}H$ NMR spectrum of compound 5b.

S51

Figure S36. ¹¹B NMR spectrum of compound 6.

Figure S38. ${}^{13}C{}^{1}H$ NMR spectrum of compound 6.

References

- M. Arrowsmith, J. Böhnke, B H. raunschweig, A. Deißenberger, R. D. Dewhurst, W. C. Ewing, C. Hörl, J. Mies and J. H. Muessig, *Chem. Commun.*, 2017, 53, 8265-8367.
- (a) Y. Shoji, N. Tanaka, S. Muranaka, N. Shigeno, H. Sugiyama, K. Takenouchi, F. Hajjaj and T. Fukushima, *Nat. Commun.*, 2016, 7, 12704; (b) B. Wrackmeyer, O. L. Tok, W. Milius, M. H. Bhatti, S. Ali and *Z. Naturforsch.*, 2002, 58b, 133–138.
- 3 G. M. Sheldrick, SADABS: Program for Empirical Absorption Correction of Area Detector Data. University of Göttingen: Germany, 1996.
- 4 G. M. Sheldrick, SHELXTL 5.10 for Windows NT: Structure Determination Software Programs. Bruker Analytical X-ray Systems, Inc., Madison, Wisconsin, USA, 1997.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O.Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J.Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision D.01; Gaussian, Inc.: Pittsburgh, PA, 2009.
- 6 (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652; (b) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785-789.
- 7 (a) S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104; (b) S. Grimme, J. Comput. Chem. 2006, 27, 1787-1799.
- 8 (a) K. Fukui, J. Phys. Chem., 1970, 74, 4161-4163; (b) K. Fukui, Acc. Chem. Res., 1981, 14, 363-368.
- 9 (a) M. Cossi, N. Rega, G. Scalmani and V. Barone, *J. Comput. Chem.*, 2003, 24, 669-681; (b) M. Cossi, V. Barone, R. Cammi and J. Tomasi, *Chem. Phys. Lett.*, 1996, 255, 327-335; (c) M. Cossi, V. Barone, B. Mennucci and J. Tomasi, *Chem. Phys. Lett.*, 1988, 286, 253-260; (d) M. Cossi, V. Barone and M. A. Robb, *J. Chem. Phys.* 1999, 111, 5295-5302.