Supporting Information

Fabrication of REVO₄ films via sacrificial conversion from Layered rare-

earth hydroxides (LRHs) films: the investigation of the transition

mechanism and their photoluminescence

He Zhang^a, Taihui Chen^a, Sen Qin^a, Junjie Huang^c, and Xiaoli Wu^{a,b,c*}

^a College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China

^b Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China

^c Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials in Guangxi; Guilin University of Technology, Guilin 541004, China

*Corresponding author

Xiaoli Wu

College of Materials Science and Engineering, Guilin University of

Technology, Guilin 541004, China

E-mail address: wuxiaoli@glut.edu.cn

Fig. S1. XRD patterns (a) and FT-IR spectra (b) of YVO₄ films obtained via further heat treatment at different temperatures for 2h, and the corresponding temperatures are marked in the figures.

Fig. S2. XPS spectra of Yttrium (a), Carbon(b) and Oxygen(c) elements f or Y₂(OH)₅NO₃·nH₂O (LYH) film and YVO₄ film, respectively.

Fig. S3. XRD patterns (a) and FT-IR spectra (b) of YVO_4 films prepared at lower temperatures, and the corresponding reaction conditions are marked in the figures.

Fig. S4. FE-SEM images of YVO4 films prepared at lower temperatures, and the

corresponding reaction conditions were marked in the figures.

Fig. S5. XRD patterns (a) and FT-IR spectra (b) of the $RE_2(OH)_5NO_3 \cdot nH_2O$ (RE

=La–Ho) films.

Fig. S6. FE-SEM images of the $RE_2(OH)_5NO_3 \cdot nH_2O$ (RE =La–Ho) films.

Fig. S7. FT-IR spectrum of the REVO₄ (RE = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy and Ho)

films.

Fig. S8. XRD pattern of YVO_4 , $(Y_{0.95}Dy_{0.05})VO_4$, $(Y_{0.097}Eu_{0.03})VO_4$ and

(Y_{0.947}Eu_{0.003}Dy_{0.05})VO₄ films

Fig. S9. Photoluminescence excitation spectra of the $(Y_{0.997}Eu_{0.003})VO_4$ (a), $(Y_{0.95}Dy_{0.05})VO_4$ (b) films recorded by monitoring the 614 nm Eu³⁺ emission (a) and 573 nm Dy³⁺ emission (b).

Fig. S10. Luminescence decay behaviors of the Dy³⁺ doped samples with and without

the Eu^{3+} for the 573 nm emission under the 290 nm excitiation.

Fig. S11. CIE chromaticity diagram for the emission colors of the $(Y_{0.95-} xDy_{0.05}Eu_x)VO_4$ (x=0-0.01) films under 290 nm excitation.

Sample	a=b(Å)	c(Å)	V (Å ³)
Standard	7.123	6.292	319.238
YVO_4	7.137	6.315	321.666
YVO ₄ :Dy	7.141	6,316	322.077
YVO ₄ :Eu	7.138	6.316	321.807
YVO ₄ :Eu,Dy	7.148	6.318	322.811

Table S1. The results of structure refinement for YVO₄:RE