Electronic Supplementary Information

Efficient, scalable, closed-loop synthesis of highly crystalline pure phase MgAl-layered double hydroxides intercalated with hydroxyl anions

Luofu Min, Jingying Duan, Lu Liu, Sheng Ge, Wen Zhang, Yuxin Wang*

State Key Laboratory of Chemical Engineering

Tianjin Key Laboratory of Membrane Science and Desalination Technology School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. *Corresponding author. E-mail address: <u>yxwang@tju.edu.cn</u>

Fig. S1 XRD patterns and FTIR spectra of MgO-1150-T-t.

Fig. S2 XRD patterns and FTIR spectra of MgO-550-80-t.

Fig. S3 TGA of MgO-550-80-5. The first weight loss step (30-180 °C) is assigned to the removal of water molecules in the interlayer of MgAl-LDH. The contents of Mg and Al in LDH were detected by ICP, and the Mg/ Al ratio is 2.57:1. The carbon content determined via CHN is 0.3 wt%. Consequently, the chemical formula of MgO-550-80-5 was estimated to be $[Mg_{0.720}Al_{0.280}(OH)_2](OH)_{0.242}(CO_3)_{0.019}$ •0.57H₂O. The total weight loss (42.7%) is consistent with the calculated value (42.0%) on the basis of the empirical formula.

Fig. S4 MgAl-LDH from regenerative NaAlO₂. (a) XRD pattern and (b) FTIR spectrum of MgO-550-80-5, (c) SEM image of pristine MgO-550, (d and e) SEM images of MgO-550-80-5.

Fig. S5 Raman spectrum of NaAlO₂ solution (1.5 M). The peak at 620 cm⁻¹ is assigned to symmetric stretching vibration¹ of tetrahedral Al(OH)₄⁻.

Fig. S6 FTIR spectra of Mg(OH)₂, Al(OH)₃, and AlOOH.

Fig. S7 (a) XRD pattern, (b) FTIR spectrum, and (c and d) SEM images of MgO-550-120-1. The trace of $Mg(OH)_2$ can be observed in XRD pattern and FTIR spectrum. The sharp absorption peak at 3698 cm⁻¹ in FTIR spectrum is assigned to the stretching vibration of OH in $Mg(OH)_2$.

Fig. S8 Two-steps synthesis of MgAl-LDH from MgO [Mg(OH)₂] and NaAlO₂ at 100 °C. (a) XRD patterns, (b) FTIR spectra, (c) SEM image of Mg(OH)₂ from MgO-1150 at 100 °C, (d) SEM image of the precipitates after 168 h. MgO-1150 was converted completely into Mg(OH)₂ by hydrothermal treatment at 100 °C for 12 h. Then, NaAlO₂ was added to the hydrothermal system. According to the Le chatelier's law, the dissolution-precipitation equilibrium of Mg(OH)₂ shifts because of the removal of Mg²⁺ for constructing MgAl-LDH in the presence of Al(OH)₄⁻. Indeed, the MgAl-LDH phase presented in the precipitates. However, a great deal of Mg(OH)₂ survived even after 36 h. Although MgAl-LDH is more thermodynamically stable than Mg(OH)₂,² the dissolution rate of Mg(OH)₂ was suppressed dramatically in an alkaline condition (pH > 11.7, 25°C) owing to the "common-ion effect". After 168 h, a trace of Mg(OH)₂ still can be observed, which is much slower than that of MgO. Given the sluggish kinetics of Mg(OH)₂ compared with MgO, it can be inferred that the Mg(OH)₂ is not the essential intermediate during DIDR, otherwise Mg(OH)₂ would be detected in FTIR spectra and XRD patterns.

	Company	Туре	Specific area/ m ² g ⁻¹
1	Sakai Chemical Industry Co., Ltd.	HT-1	6-12
2	Kyowa Kagaku Kogyo Co., Ltd.	DHT-4	10-15
3	Hunan Shaoyang Tiantang Auxiliaries	-	8-20
	Chemical Co., Ltd.		
4	HEOWNS	-	20
5	This work	MgO-550-80-5	56.3

Table S1 Specific surface areas of commercial products of MgAl-LDH and MgO-550-80-5.

References

1. Johnston, C. T.; Agnew, S. F.; Schoonover, J. R.; Kenney, J. W.; Page, B.; Osborn, J.; Corbin, R, *Environ. Sci. Technol.* 2002, **36**, 2451-2458.

2. Johnson, C. A.; Glasser, F. P, Clays Clay Miner. 2003, 51, 1-8.