Supporting Information

Enhancing the Phosphorescence Decay Pathway of Cu(I) Emitters – The Role of Copper-Iodine Moiety

Giliandro Farias^[a], Cristian A.M. Salla^[b], Jéssica Toigo^[a], Luís Gustavo Teixeira Alves Duarte^[c], Adailton J. Bortoluzzi^[a], Edivandro Girotto^[a], Hugo Gallardo^[a], Teresa Dib Zambon Atvars^[c], Bernardo de Souza^[a]*, Ivan H. Bechtold^[b]*

^[a]Chemistry Department, Universidade Federal de Santa Catarina, 88040-900,
Florianópolis, SC, Brazil
^[b]Physics Department, Universidade Federal de Santa Catarina, 88040-900,
Florianópolis, SC, Brazil
^[c]Chemistry Department, Universidade Estadual de Campinas, 13083-970, Campinas,
SP, Brazil

*Corresponding authors: bernadsz@gmail.com and ivan.bechtold@ufsc.br

1. Synthesis and Characterization

- 2. NMR and IR Data
- 3. Thermogravimetric Analyses and Cyclic Voltammetry Studies
- 4. UV-Vis Absorption in Solution
- 5. Theoretical Modeling
- 6. X-Ray Crystallography

1. Synthesis and Characterization

•

Scheme S1. Synthesis route to obtain the diimine ligands.

Scheme S2. Synthesis route to obtain complexes 1-3.

2. NMR and IR Data

Figure S1. ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 1.

Figure S2. ¹³C NMR spectrum (CDCl₃, 100 MHz) of compound 1.

Figure S3. ³¹P NMR spectrum (CDCl₃, 162 MHz) of compound 1.

Figure S4. ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 2.

Figure S5. ¹³C NMR spectrum (CDCl₃, 100 MHz) of compound 2.

Figure S6. ³¹P NMR spectrum (CDCl₃, 162 MHz) of compound 2.

Figure S7. ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 3.

Figure S8. ¹³C NMR spectrum (CDCl₃, 100 MHz) of compound 3.

Figure S9. ¹³C NMR spectrum (CDCl₃, 162 MHz) of compound 3.

Figure S10. IR spectra of the complex 1.

Figure S11. IR spectra of the complex 2.

Figure S12. IR spectra of the complex 3.

3. Thermogravimetric Analyses and Cyclic Voltammetry Studies

Figure S13. 1-3 thermogravimetric analysis (TGA) using a heating ramp of 10 °C min⁻¹ under nitrogen atmosphere.

Figure S14. Cyclic voltammograms of the **1-3** complexes. Conditions: Working Electrode – Glassy Carbon; Reference Electrode – Ag/Ag⁺; Auxiliary Electrode – Platinum Wire; in dichloromethane solution, at 25 ± 1 ° C. The pair Fc/Fc⁺ was used as an internal standard.

4. UV-Vis Absorption in Solution

Figure S15. Optical absorption in dichloromethane solution 1.0×10^{-5} mol L⁻¹ of the Cu(I) complexes.

Figure S16. Molecular strucutere of the complexes discussed in Table 2 of the main text.

5. Theoretical Modeling

Figure S17. Optimized geometry for both isomers of complexes **1-3** obtained from DFT within PBE0/def2-TZVP(-f) and ZORA scalar-relativistic corrections level of theory.

Table S1. Selected bond lengths (Å), bond angles (°) and τ_4 geometry index at optimized S₀ geometry for both isomers of complexes **1-3** within PBE0/def2-TZVP(-f) and ZORA scalar-relativistic corrections level of theory and experimentally determined by X-Ray diffractometry.

	1		2	3	
	Euro	S ₀	Erm	S ₀	S ₀
	Ехр	(1a/1b)	Ехр	(2a/2b)	(3a/3b)
$C_{\rm P}(1)$ $\mathbf{P}(1)$	2.2061(12)	2.2047	2.1069(11)	2.2029	2.1925
Cu(1)- $F(1)$	2.2001(12)	2.2066	2.1908(11)	2.2047	2.2020
$C_{\rm H}(1)$ I(1)	2 6065(7)	2.5214	2 6127(6)	2.5286	2.5566
Cu(1)-I(1)	2.0003(7)	2.5269	2.0127(0)	2.5272	2.5320
$C_{\rm H}(1)$ N(1)	2.060(4)	2.0739	2 ()62(3)	2.1349	2.1093
Cu(1)- $In(1)$	2.009(4)	2.0748	2.002(3)	2.1338	2.1246
$C_{\rm H}(1) {\rm N}(12)$	2.121(4)	2.1462	2.116(3)	2.0935	2.1097
Cu(1)- $N(12)$	2.121(4)	2.1506	2.110(3)	2.0997	2.0981
P(1) Cu(1) I(1)	118 85(1)	122.60	115 60(4)	121.02	120.30
I (1)-Cu(1)-I(1)	110.05(+)	120.70	115.00(4)	121.10	120.73
N(1)-Cu(1)-P(1)	122 31(11)	105.66	120 58(9)	102.27	108.46
	122.31(11)	107.40	120.30(7)	101.63	102.45
N(12)-Cu(1)-P(1)	111 64(11)	102.19	120 43(10)	108.76	120.34
	111.0 (11)	101.15	120.15(10)	107.50	107.32
N(1)-Cu(1)-N(12)	78 03(18)	77.00	78 32(13)	77.23	77.26
II(1)-Cu(1)-II(12)	70.03(10)	77.03	70.52(15)	77.28	77.12
N(1) - Cu(1) - I(1)	106 35(12)	118.56	112 52(0)	123.69	118.65
IV(1)-Cu(1)-I(1)	100.33(12)	115.78	112.32())	123.66	123.22
N(12)-Cu(1)-I(1)	112 78(11)	121.17	102 98(10)	115.34	104.64
11(12)-Cu(1)-1(1)	112.70(11)	126.02	102.96(10)	116.89	117.34
T 4	0.843	0.824	0 844	0.818	0.847
U4	0.0-5	0.803	0.077	0.817	0.823

Table S2. Selected bond lengths (Å), bond angles (°) and τ_4 geometry index at optimized T₁ geometry for both isomers of complexes **1-3** within PBE0/def2-TZVP(-f) and ZORA scalar-relativistic corrections level of theory and the root-mean-square deviation (RMSD) comparing the optimized T₁ and S₀ geometries.

	1		2	2	3	3	
	a	b	a	b	а	b	
Cu(1)-P(1)	2.3194	2.3264	2.3046	2.336	2.3093	2.3403	
Cu(1)-I(1)	2.5759	2.5605	2.5015	2.5379	2.5071	2.5398	
Cu(1)-N(1)	1.9732	1.9837	2.1123	1.9441	2.0888	1.9408	
Cu(1)-N(12)	1.9504	1.9556	1.9311	1.9916	1.9291	1.9872	
P(1)-Cu(1)-I(1)	96.60	96.36	105.39	96.52	96.60	95.22	
N(1)-Cu(1)-P(1)	138.89	139.79	105.07	101.80	106.73	101.55	
N(12)-Cu(1)-P(1)	98.88	98.16	94.79	132.02	94.83	134.91	
N(1)-Cu(1)-N(12)	82.38	82.38	81.84	81.38	81.72	81.26	
N(1)-Cu(1)-I(1)	105.00	105.70	123.21	149.51	121.77	148.85	
N(12)-Cu(1)-I(1)	145.88	145.66	140.47	104.00	141.31	104.98	
RMSD	1.0451	1.3850	0.5320	1.3418	0.5754	1.3818	
τ4	0.529	0.534	0.681	0.557	0.687	0.541	

		Ener	rgy			
	State ^a	eV	nm	f	Configuration (%) ^b	TD-DFT Difference Densities ^c
	\mathbf{S}_1	3.098	400	0.0458	$H \rightarrow L (93)$	
	S_2	3.282	377	0.0020	$\text{H-1} \rightarrow \text{L} (91)$	
1a	S ₃	3.508	353	0.0122	$\mathrm{H} \rightarrow \mathrm{L+1} \ (98)$	
	S_4	3.640	340	0.0016	$\mathrm{H} \rightarrow \mathrm{L+2}\ (91)$	
	S 5	3.740	332	0.0292	$\text{H-2} \rightarrow \text{L} (80)$	
	\mathbf{S}_1	3.082	402	0.0392	$H \rightarrow L (93)$	
	S_2	3.238	383	0.0025	$\text{H-1} \rightarrow \text{L} (91)$	
1b	S ₃	3.482	356	0.0124	$\mathrm{H} \rightarrow \mathrm{L+1} \ (98)$	
	S 4	3.671	338	0.0067	$H \rightarrow L+2 (62)$ $H-2 \rightarrow L (32)$	
	S 5	3.720	333	0.0342	$\begin{array}{l} \text{H-2} \rightarrow \text{L} (56) \\ \text{H} \rightarrow \text{L+2} (35) \end{array}$	

Table S3. Data for the TD-DFT excitations within PBE0/def2-TZVP(-f) and ZORA scalar-relativistic corrections level of theory for both isomers of complex **1**.

^a Vertical states taking S_0 geometry as the reference; ^b Transitions with high percentage contributions are shown in parenthesis; ^c For the TD-DFT difference densities between ground and specified excited-state hydrogen were omitted for clarity and blue indicates decreased and red indicates increased electronic density.

		Ener	rgy			
	State ^a	eV	nm	f	Configuration (%) ^b	TD-DFT Difference Densities ^c
	S_1	2.969	417	0.0377	$H \rightarrow L (92)$	
	S_2	3.121	397	0.0124	$\text{H-1} \rightarrow \text{L} (89)$	
2a	S ₃	3.542	350	0.0125	$H \rightarrow L+1 (64)$ $H-2 \rightarrow L (30)$	
	S_4	3.553	349	0.0117	$H \rightarrow L+1 (34)$ $H-2 \rightarrow L (59)$	
	S_5	3.639	341	0.0087	$\mathrm{H} \rightarrow \mathrm{L+2}\ (95)$	
	\mathbf{S}_1	2.994	414	0.0439	$H \rightarrow L (92)$	
	S_2	3.115	398	0.0136	$\text{H-1} \rightarrow \text{L} (88)$	
2b	S ₃	3.548	349	0.0105	$\text{H-2} \rightarrow \text{L} (88)$	
	S_4	3.581	346	0.0178	$\mathrm{H} \rightarrow \mathrm{L+1} \ (96)$	
	S 5	3.647	340	0.0101	$\mathrm{H} \rightarrow \mathrm{L+2}~(96)$	

Table S4. Data for the TD-DFT excitations within PBE0/def2-TZVP(-f) and ZORA scalar-relativistic corrections level of theory for both isomers of complex **2**.

^a Vertical states taking S_0 geometry as the reference; ^b Transitions with high percentage contributions are shown in parenthesis; ^c For the TD-DFT difference densities between ground and specified excited-state hydrogen were omitted for clarity and blue indicates decreased and red indicates increased electronic density.

		Ener	rgy			
	State ^a	eV	nm	f	Configuration (%) ^b	TD-DFT Difference Densities ^c
	S_1	3.013	412	0.0428	$H \rightarrow L (93)$	
	\mathbf{S}_2	3.154	393	0.0083	$\text{H-1} \rightarrow \text{L} (90)$	
3a	S ₃	3.523	352	0.0144	$\mathrm{H} \rightarrow \mathrm{L+1} \ (97)$	
	S_4	3.587	345	0.0070	$\text{H-2} \rightarrow \text{L} (80)$	
	S 5	3.655	339	0.0038	$\mathrm{H} \rightarrow \mathrm{L+2} \ (94)$	
	S_1	3.030	409	0.0461	$H \rightarrow L (91)$	
	S_2	3.156	393	0.0127	$\text{H-1} \rightarrow \text{L} (88)$	
3b	S ₃	3.567	348	0.0173	$H \rightarrow L+1 \ (96)$	
	S_4	3.591	345	0.0071	$\text{H-2} \rightarrow \text{L(79)}$	
	S 5	3.649	340	0.0056	$\mathrm{H} \rightarrow \mathrm{L+2} \ (94)$	

Table S5. Data for the TD-DFT excitations within PBE0/def2-TZVP(-f) and ZORA scalar-relativistic corrections level of theory for both isomers of complex **3**.

^a Vertical states taking S_0 geometry as the reference; ^b Transitions with high percentage contributions are shown in parenthesis; ^c For the TD-DFT difference densities between ground and specified excited-state hydrogen were omitted for clarity and blue indicates decreased and red indicates increased electronic density.

Figure S18. Experimental absorption spectra of **1-3** in CH₂Cl₂ (filled curves) and the theoretical absorption spectra (gray solid curves) for both respectively isomers **a** and **b** calculated within PBE0/def2-TZVP(-f) and ZORA scalar-relativistic corrections level of theory and convoluted with Gaussians of 0.50 eV width.

		Energy				
	State ^a	eV	nm	f^{b}	Configuration (%) ^c	TD-DFT Difference Densities ^d
	T_1	2.809	443	1.452×10 ⁻⁵	$\mathrm{H} \rightarrow \mathrm{L} \ (90)$	
1a	T 2	3.131	397	1.219×10 ⁻²	$\text{H-1} \rightarrow \text{L} (83)$	
	T 3	3.382	367	1.931×10 ⁻⁵	$\mathrm{H} \rightarrow \mathrm{L+1} \ (85)$	
	T_1	2.832	440	1.772×10 ⁻⁵	$H \rightarrow L (92)$	
1b	T2	3.073	404	8.352×10 ⁻³	$\text{H-1} \rightarrow \text{L} (85)$	
	T 3	3.357	370	1.372×10 ⁻⁵	$\mathrm{H} \rightarrow \mathrm{L+1} \ (84)$	

Table S6. Data for the SOC-TD-DFT triplet excitations within PBE0/def2-TZVP(-f) and ZORA scalar-relativistic corrections level of theory for both isomers of complex **1**.

^a Vertical states taking S_0 geometry as the reference; ^b *f* for the triplet states are shown as an average of the substates x, y and z; ^c Transitions with high percentage contributions are shown in parenthesis; ^d For the TD-DFT difference densities between ground and specified excited-state hydrogen were omitted for clarity and blue indicates decreased and red indicates increased electronic density.

		Ene	rgy			
	State ^a	eV	nm	$f^{\mathfrak{b}}$	Configuration (%) ^c	TD-DFT Difference Densities ^d
	T_1	2.709	461	2.515×10 ⁻⁵	$H \rightarrow L (95)$	
2a	T ₂	2.936	425	6.669×10 ⁻³	$\text{H-1} \rightarrow \text{L} (88)$	
	T 3	3.357	369	2.614×10 ⁻⁴	$H-5 \rightarrow L (18)$ $H-3 \rightarrow L (28)$ $H-2 \rightarrow L (33)$	
	T_1	2.725	458	2.621×10 ⁻⁵	$H \rightarrow L (95)$	
2b	T2	2.932	426	4.914×10 ⁻³	$\text{H-1} \rightarrow \text{L} (88)$	
	T ₃	3.349	370	3.318×10 ⁻⁴	$H-4 \rightarrow L (12)$ $H-3 \rightarrow L (27)$ $H-2 \rightarrow L (34)$	

Table S7. Data for the SOC-TD-DFT triplet excitations within PBE0/def2-TZVP(-f) and ZORA scalar-relativistic corrections level of theory for both isomers of complex **2**.

^a Vertical states taking S_0 geometry as the reference; ^b *f* for the triplet states are shown as an average of the substates x, y and z; ^c Transitions with high percentage contributions are shown in parenthesis; ^d For the TD-DFT difference densities between ground and specified excited-state hydrogen were omitted for clarity and blue indicates decreased and red indicates increased electronic density.

		Ener	rgy			
	State ^a	eV	nm	f^{b}	Configuration (%) ^c	TD-DFT Difference Densities ^d
	T_1	2.749	454	8.595×10 ⁻⁶	$H \rightarrow L (95)$	
3a	T2	2.972	420	6.023×10 ⁻³	$\text{H-1} \rightarrow \text{L} (88)$	
	T 3	3.297	376	1.441×10 ⁻⁴	$H-2 \rightarrow L (33)$ $H-3 \rightarrow L (37)$	
	T_1	2.760	452	1.068×10 ⁻⁵	$H \rightarrow L (95)$	
3b	T2	2.968	419	4.819×10 ⁻³	$\text{H-1} \rightarrow \text{L} (88)$	
	T ₃	3.296	376	2.036×10 ⁻⁴	$H-2 \rightarrow L (36)$ $H-3 \rightarrow L (35)$	

Table S8. Data for the SOC-TD-DFT triplet excitations within PBE0/def2-TZVP(-f) and ZORA scalar-relativistic corrections level of theory for both isomers of complex **3**.

^a Vertical states taking S_0 geometry as the reference; ^b *f* for the triplet states are shown as an average of the substates x, y and z; ^c Transitions with high percentage contributions are shown in parenthesis; ^d For the TD-DFT difference densities between ground and specified excited-state hydrogen were omitted for clarity and blue indicates decreased and red indicates increased electronic density.

Complex	$ \langle I \mu F\rangle ^2$	$k_{\rm PF}^{\rm THEO}~({\rm s}^{-1})$	Complex	$k_{\rm PF}^{\rm EXP}$ (s ⁻¹)
1a	0.6151	$3.91 imes 10^7$	1	1.88×10^{6}
1b	0.5134	$3.21 imes 10^7$	1	1.00 ~ 10
2a	0.5123	$2.88 imes 10^7$	2	1.04×10^{6}
2b	0.5964	3.42×10^7	2	1.04 × 10
3 a	0.5767	3.37×10^7	2	2 22 106
3 b	0.6179	$3.89 imes 10^7$	3	$3.33 \times 10^{\circ}$

Table S9. Comparison between theoretical prompt fluorescence rates and the experimental one determined from the Boltzmann type equation for 1-3.

^a Determine using $k_{\rm PF}^{\rm THEO} = 2.136 \times 10^{10} \times |\langle I|\mu|F\rangle||^2 \times \Delta E(S_1)^3 \times \eta^2$, and setting η^2 as 2.016.

Table S10. Theoretical and experimental singlet and triplet energies and $\Delta E(S_1-T_1)$ for complexes 1-3.

Theoretical	1a	2a	3 a
S ₁ ^a / eV	3.098	2.969	3.013
$T_1 \ ^b\!\!/ \ eV$	2.809	2.709	2.749
$\Delta E(S_1-T_1) \ ^b/\ eV$	0.289	0.260	0.264
Experimental	1	2	3
S ₁ ^c / eV	2.58	2.57	2.55
T ₁ ^c / eV	2.39	2.40	2.36
$\Delta E(S_1-T_1) d/ eV$	0.19	0.17	0.19

^a Vertical energy difference from TD-DFT; ^b Vertical energy difference from SOC-TD-DFT; ^c Experimental data obtained from the onset of the emission spectra at room temperature and 77 K; ^d $\Delta E(S_1 - T_1)$ obtained from the difference between the S_1 and T_1 energies.

Table S11. Data of SOCME (in cm⁻¹) at optimized S₀ geometry within PBE0/def2-TZVP(-f) and ZORA scalar-relativistic corrections level of theory for both isomers of complexes **1-3**.

	1a	1b	2a	2b	3 a	3 b
$\langle T_1 \mathbf{H}_{\mathrm{SO}} \mathbf{S}_0 \rangle^{\mathrm{a}}$	46.63	44.44	26.59	30.14	21.33	23.75
$\langle T_1 \mathbf{H}_{\mathrm{SO}} \mathbf{S}_1 \rangle^{\mathrm{a}}$	38.81	20.74	73.62	77.49	51.60	72.08
$\langle T_1 \mathbf{H}_{\mathrm{SO}} \mathbf{S}_2 \rangle^{\mathrm{a}}$	399.10	416.55	392.40	385.63	378.67	380.72
$\langle T_1 \mathbf{H}_{\mathrm{SO}} \mathbf{S}_3 \rangle^{\mathrm{a}}$	16.44	18.76	201.53	359.48	28.81	49.63
$\langle T_1 \mathbf{H}_{\mathrm{SO}} \mathbf{S}_4 \rangle^{\mathrm{a}}$	53.73	156.60	274.98	58.98	319.30	330.84
$\langle T_1 \mathbf{H}_{\mathrm{SO}} \mathbf{S}_5 \rangle^{\mathrm{a}}$	253.99	217.04	53.57	41.18	53.15	53.33
$\langle T_2 \mathbf{H}_{\mathrm{SO}} \mathbf{S}_0 \rangle^{\mathrm{a}}$	87.21	85.62	58.63	56.32	59.72	58.84
$\langle T_2 \mathbf{H}_{\mathrm{SO}} \mathbf{S}_1 \rangle^{\mathrm{a}}$	471.44	479.65	455.35	456.28	445.90	448.44
$\langle T_2 \mathbf{H}_{\mathrm{SO}} \mathbf{S}_2 \rangle^{\mathrm{a}}$	30.45	37.92	135.65	152.00	105.16	134.16
$\langle T_2 \mathbf{H}_{\mathrm{SO}} \mathbf{S}_3 \rangle^{\mathrm{a}}$	11.36	14.40	233.27	405.14	36.13	53.70
$\langle T_2 \mathrm{H}_{\mathrm{SO}} S_4 \rangle^{\mathrm{a}}$	108.61	226.35	306.34	59.27	371.63	376.73
$\langle T_2 \mathbf{H}_{\mathrm{SO}} \mathbf{S}_5 \rangle^{\mathrm{a}}$	355.76	263.30	37.09	35.08	34.78	36.55
$\langle T_3 \mathbf{H}_{\mathrm{SO}} \mathbf{S}_0 \rangle^{\mathrm{a}}$	28.84	39.48	36.76	39.12	24.61	26.17
$\langle T_3 \mathbf{H}_{\mathrm{SO}} \mathbf{S}_1 \rangle^{\mathrm{a}}$	37.96	27.72	281.33	302.85	159.38	172.11
$\langle T_3 \mathbf{H}_{\mathrm{SO}} \mathbf{S}_2 \rangle^{\mathrm{a}}$	15.81	17.46	262.97	273.97	136.97	149.58
$\langle T_3 \mathbf{H}_{\mathrm{SO}} \mathbf{S}_3 \rangle^{\mathrm{a}}$	15.47	11.34	16.37	28.90	3.43	1.37
$\langle T_3 \mathrm{H}_{\mathrm{SO}} S_4 \rangle^{\mathrm{a}}$	15.31	13.81	23.68	7.52	26.09	24.85
$\langle T_3 \mathrm{H_{SO}} S_5 \rangle^{\mathrm{a}}$	36.96	22.96	37.03	37.18	22.10	22.61
$\Sigma \langle T_{1-3} \hat{H}_{SO} S_{1-5} \rangle$	1861.25	1944.65	2785.18	2697.44	2173.12	2306.71
$\Sigma \big \langle T_{1-2} \big \hat{H}_{SO} \big S_1 \big \rangle$	510.25	500.39	528.96	550.23	497.51	520.52

 $\overline{{}^a\sqrt{\langle (S_i|H_{SO}|T_{j\,(MS=0,\pm 1)})^2\rangle}}$ in the S_0 geometry.

Table S12. Data of SOCME (in cm⁻¹) at optimized T_1 geometry within PBE0/def2-TZVP(-f) and ZORA scalar-relativistic corrections level of theory for both isomers of complexes 1-3.

	1a	1b	2a	2b	3 a	3 b
$\langle T_1 \mathbf{H}_{\mathrm{SO}} \mathbf{S}_0 \rangle^{\mathrm{a}}$	70.30	72.38	51.71	64.36	52.21	64.08
$\langle T_1 \mathbf{H}_{\mathrm{SO}} S_1 \rangle^{\mathrm{a}}$	21.55	28.02	25.39	36.34	26.55	36.98
$\langle T_1 \mathbf{H}_{\mathrm{SO}} \mathbf{S}_2 \rangle^{\mathrm{a}}$	27.64	24.34	387.51	369.59	373.18	363.15
$\langle T_1 \mathbf{H}_{\mathrm{SO}} \mathbf{S}_3 \rangle^{\mathrm{a}}$	363.47	368.49	87.96	53.77	52.11	5.62
$\langle T_1 \mathbf{H}_{\mathrm{SO}} \mathbf{S}_4 \rangle^{\mathrm{a}}$	99.13	13.11	237.73	241.35	203.75	62.83
$\langle T_1 \mathbf{H}_{\mathrm{SO}} \mathbf{S}_5 \rangle^{\mathrm{a}}$	13.34	294.91	20.10	337.46	129.13	398.99
$\langle T_2 \mathbf{H}_{\mathrm{SO}} \mathbf{S}_0 \rangle^{\mathrm{a}}$	169.08	143.28	94.82	119.64	94.73	113.75
$\langle T_2 \mathbf{H}_{\mathrm{SO}} S_1 \rangle^{\mathrm{a}}$	308.71	263.81	400.63	335.94	381.47	325.51
$\langle T_2 \mathbf{H}_{\mathrm{SO}} \mathbf{S}_2 \rangle^{\mathrm{a}}$	24.19	12.20	149.85	189.64	152.04	226.06
$\langle T_2 \mathbf{H}_{\mathrm{SO}} \mathbf{S}_3 \rangle^{\mathrm{a}}$	239.87	246.25	168.44	55.53	97.33	16.65
$\langle T_2 \mathrm{H}_{\mathrm{SO}} S_4 \rangle^{\mathrm{a}}$	120.97	42.83	452.24	482.58	414.09	68.89
$\langle T_2 \mathbf{H}_{\mathrm{SO}} \mathbf{S}_5 \rangle^{\mathrm{a}}$	27.32	427.29	5.94	609.28	223.43	766.69
$\langle T_3 \mathbf{H}_{\mathrm{SO}} \mathbf{S}_0 \rangle^{\mathrm{a}}$	62.40	116.83	25.44	41.45	24.25	48.02
$\langle T_3 \mathrm{H}_{\mathrm{SO}} S_1 \rangle^{\mathrm{a}}$	140.98	224.82	234.09	47.43	224.31	44.88
$\langle T_3 \mathrm{H_{SO}} S_2 \rangle^\mathrm{a}$	17.36	18.95	375.01	36.67	321.51	35.18
$\langle T_3 \mathrm{H}_{\mathrm{SO}} S_3 \rangle^{\mathrm{a}}$	134.20	250.41	30.41	14.49	17.95	9.82
$\langle T_3 \mathrm{H_{SO}} S_4 \rangle^\mathrm{a}$	55.81	21.38	150.35	64.40	129.98	7.99
$\langle T_3 \mathrm{H_{SO}} S_5 \rangle^{\mathrm{a}}$	9.65	370.81	9.25	88.12	82.96	51.84
$\Sigma \langle T_{1-3} \hat{H}_{SO} S_{1-5} \rangle$	1604.18	2607.62	2734.90	2962.58	2829.78	2421.07
$\Sigma \big \langle T_{1-2} \big \hat{H}_{SO} \big S_1 \big \rangle$	385.03	291.83	426.02	372.28	408.02	362.48

 $\overline{{}^a\sqrt{\langle (S_i|H_{SO}|T_{j\,(MS=0,\pm1)})^2\rangle}}$ in the T_1 geometry.

Complex	T ₁ (eV) ^a	$k_{\rm Phosp}^{\rm THEO \ b}({\rm s}^{-1})$	Complex	$k_{\text{Phosp}}^{\text{EXP}}$ (s ⁻¹)	
1 a	2.13	$0.55 imes 10^4$	1	0.07×10^4	
1b	2.16	$0.63 imes 10^4$	1	0.97×10^{-5}	
2a	2.33	$2.96 imes 10^4$	2	1.26×10^{4}	
2b	2.14	$1.77 imes 10^4$	2	1.20×10^{-1}	
3 a	2.29	$1.87 imes 10^4$	2	0.00×10^4	
3 b	2.10	$1.45 imes 10^4$	3	0.99×10^{10}	
Cu(phen)(POP) ⁺	2.18	2.60×10^{3}	Cu(phen)(POP) ⁺	$2.69 imes 10^3$	
Ir(bp) ₂ (acac)	1.87	$1.56 imes 10^5$	Ir(bp) ₂ (acac)	9.26×10^4	
^a Adiabatic energy; ^b I	Determined u	sing $k_{\text{Phosp}} = \frac{\eta^{3} E(T_{j})^{3}}{1.5}$	$\left\{\sum_{n} \frac{\langle \mathbf{T}_{j} \hat{\mathbf{H}}_{SO} \mathbf{S}_{n} \rangle}{E(\mathbf{S}_{n}) - E(\mathbf{T}_{j})} \times \left(\frac{f_{n}}{E(\mathbf{S}_{n})}\right)\right\}$	$\left(\frac{1}{2}\right)^{\frac{1}{2}}$ ² . The T ₁ state	

Table S13. Comparison between theoretical phosphorescence rates and the experimentalone obtained from the Boltzmann type equation for 1-3.

adiabatic energy was used, η^3 set as 2.887 for the copper complexes and 2.785 for the iridium complex.

6. X-Ray Crystallography

Figure S19. Molecular structure of complex 1 (top) and complex 2 (botton).

Empirical formula	C ₂₇ H ₂₄ CuIN ₃ P [+ solvent]
Formula weight	611.90
Temperature	150(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	$P2_1/n$
Unit cell dimensions	a = 9.0460(10) Å
	b = 14.9018(17) Å
	c = 22.398(3) Å
	$\beta = 98.696(2)^{\circ}$
Volume	2984.6(6) Å3
Z	4
Density (calculated)	1.362 Mg/m3
Absorption coefficient	1.837 mm-1
F(000)	1216
Crystal size	0.360 x 0.100 x 0.080 mm3
Theta range for data collection	1.647 to 30.017°.
Index ranges	$-12 \le h \le 10, -20 \le k \le 16, -31 \le l \le 31$
Reflections collected	28144
Independent reflections	8616 [R(int) = 0.0444]
Completeness to theta = 25.242°	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7460 and 0.6229
Refinement method	Full-matrix least-squares on F2
Data / restraints / parameters	8616 / 0 / 299
Goodness-of-fit on F2	1.015
Final R indices [I>2sigma(I)]	R1 = 0.0597, wR2 = 0.1307
R indices (all data)	R1 = 0.0984, wR2 = 0.1501
Extinction coefficient	n/a
Largest diff. peak and hole	3.235 and -3.073 e.Å ⁻³

 Table S14.
 Crystal data and structure refinement for complex 1.

Cu(1)-N(1)	2.069(4)	P(1)-C(41)	1.823(5)	
Cu(1)-N(12)	2.121(4)	C(21)-C(22)	1.394(6)	
Cu(1)-P(1)	2.2061(12)	C(21)-C(26)	1.394(7)	
Cu(1)-I(1)	2.6065(7)	C(22)-C(23)	1.388(7)	
N(1)-N(2)	1.312(7)	C(23)-C(24)	1.377(9)	
N(1)-C(5)	1.346(7)	C(24)-C(25)	1.373(9)	
N(2)-C(6)	1.353(9)	C(25)-C(26)	1.394(8)	
N(2)-C(3)	1.426(9)	C(31)-C(36)	1.384(7)	
C(3)-C(4)	1.337(10)	C(31)-C(32)	1.387(6)	
C(4)-C(5)	1.409(7)	C(32)-C(33)	1.391(8)	
C(5)-C(11)	1.449(9)	C(33)-C(34)	1.380(8)	
C(11)-N(12)	1.340(7)	C(34)-C(35)	1.384(7)	
C(11)-C(16)	1.386(8)	C(35)-C(36)	1.390(7)	
N(12)-C(13)	1.378(9)	C(41)-C(42)	1.385(7)	
C(13)-C(14)	1.333(9)	C(41)-C(46)	1.387(7)	
C(14)-C(15)	1.366(10)	C(42)-C(43)	1.399(8)	
C(15)-C(16)	1.385(10)	C(43)-C(44)	1.370(10)	
P(1)-C(31)	1.820(5)	C(44)-C(45)	1.378(10)	
P(1)-C(21)	1.821(5)	C(45)-C(46)	1.385(8)	
N(1)-Cu(1)-N(12)	78.03(18)	C(3)-C(4)-C(5)	105.7(6)	
N(1)-Cu(1)-P(1)	122.31(11)	N(1)-C(5)-C(4)	112.1(6)	
N(12)-Cu(1)-P(1)	111.64(11)	N(1)-C(5)-C(11)	117.8(5)	
N(1)-Cu(1)-I(1)	106.35(12)	C(4)-C(5)-C(11)	130.0(5)	
N(12)-Cu(1)-I(1)	112.78(11)	N(12)-C(11)-C(16)	120.4(6)	
P(1)-Cu(1)-I(1)	118.85(4)	N(12)-C(11)-C(5)	114.7(5)	
N(2)-N(1)-C(5)	104.2(5)	C(16)-C(11)-C(5)	124.8(5)	
N(2)-N(1)-Cu(1)	141.2(4)	C(11)-N(12)-C(13)	116.9(5)	
C(5)-N(1)-Cu(1)	114.6(4)	C(11)-N(12)-Cu(1)	114.7(4)	
N(1)-N(2)-C(6)	119.5(6)	C(13)-N(12)-Cu(1)	128.3(4)	
N(1)-N(2)-C(3)	112.5(6)	C(14)-C(13)-N(12)	127.2(8)	
C(6)-N(2)-C(3)	127.9(6)	C(13)-C(14)-C(15)	113.7(8)	

 Table S15.
 Bond lengths [Å] and angles [°] for complex 1.

C(4)-C(3)-N(2)	105.5(6)	C(14)-C(15)-C(16)	123.5(8)
C(15)-C(16)-C(11)	118.2(6)	C(36)-C(31)-P(1)	116.9(3)
C(31)-P(1)-C(21)	104.0(2)	C(32)-C(31)-P(1)	124.0(4)
C(31)-P(1)-C(41)	102.1(2)	C(31)-C(32)-C(33)	119.7(5)
C(21)-P(1)-C(41)	102.8(2)	C(34)-C(33)-C(32)	121.3(5)
C(31)-P(1)-Cu(1)	116.42(14)	C(33)-C(34)-C(35)	118.9(5)
C(21)-P(1)-Cu(1)	116.47(15)	C(34)-C(35)-C(36)	120.2(5)
C(41)-P(1)-Cu(1)	113.12(15)	C(31)-C(36)-C(35)	120.8(4)
C(22)-C(21)-C(26)	118.6(5)	C(42)-C(41)-C(46)	119.0(5)
C(22)-C(21)-P(1)	123.9(4)	C(42)-C(41)-P(1)	123.3(4)
C(26)-C(21)-P(1)	117.6(3)	C(46)-C(41)-P(1)	117.7(4)
C(23)-C(22)-C(21)	120.6(5)	C(41)-C(42)-C(43)	120.2(6)
C(24)-C(23)-C(22)	119.9(5)	C(44)-C(43)-C(42)	119.9(6)
C(25)-C(24)-C(23)	120.7(5)	C(43)-C(44)-C(45)	120.3(6)
C(24)-C(25)-C(26)	119.6(6)	C(44)-C(45)-C(46)	119.9(6)
C(25)-C(26)-C(21)	120.6(5)	C(45)-C(46)-C(41)	120.6(6)
C(36)-C(31)-C(32)	119.1(5)		

Table S16. Torsion angles $[^{\circ}]$ for complex 1.

C(5)-N(1)-N(2)-C(6)	-178.4(5)	P(1)-C(21)-C(22)-C(23)	-178.4(4)
Cu(1)-N(1)-N(2)-C(6)	-0.5(8)	C(21)-C(22)-C(23)-C(24)	-0.5(8)
C(5)-N(1)-N(2)-C(3)	0.2(5)	C(22)-C(23)-C(24)-C(25)	-0.3(9)
Cu(1)-N(1)-N(2)-C(3)	178.0(4)	C(23)-C(24)-C(25)-C(26)	1.2(10)
N(1)-N(2)-C(3)-C(4)	0.1(6)	C(24)-C(25)-C(26)-C(21)	-1.3(9)
C(6)-N(2)-C(3)-C(4)	178.5(6)	C(22)-C(21)-C(26)-C(25)	0.5(8)
N(2)-C(3)-C(4)-C(5)	-0.3(5)	P(1)-C(21)-C(26)-C(25)	179.5(4)
N(2)-N(1)-C(5)-C(4)	-0.3(5)	C(21)-P(1)-C(31)-C(36)	-165.0(4)
Cu(1)-N(1)-C(5)-C(4)	-178.9(3)	C(41)-P(1)-C(31)-C(36)	88.3(4)
N(2)-N(1)-C(5)-C(11)	177.5(4)	Cu(1)-P(1)-C(31)-C(36)	-35.4(4)
Cu(1)-N(1)-C(5)-C(11)	-1.0(5)	C(21)-P(1)-C(31)-C(32)	17.9(5)
C(3)-C(4)-C(5)-N(1)	0.4(5)	C(41)-P(1)-C(31)-C(32)	-88.9(5)
C(3)-C(4)-C(5)-C(11)	-177.2(5)	Cu(1)-P(1)-C(31)-C(32)	147.4(4)
N(1)-C(5)-C(11)-N(12)	-2.0(6)	C(36)-C(31)-C(32)-C(33)	-1.4(8)
C(4)-C(5)-C(11)-N(12)	175.4(4)	P(1)-C(31)-C(32)-C(33)	175.7(5)
N(1)-C(5)-C(11)-C(16)	179.3(4)	C(31)-C(32)-C(33)-C(34)	0.0(10)
C(4)-C(5)-C(11)-C(16)	-3.3(8)	C(32)-C(33)-C(34)-C(35)	0.1(10)
C(16)-C(11)-N(12)-C(13)	0.4(6)	C(33)-C(34)-C(35)-C(36)	1.1(9)
C(5)-C(11)-N(12)-C(13)	-178.3(4)	C(32)-C(31)-C(36)-C(35)	2.6(8)
C(16)-C(11)-N(12)-Cu(1)	-177.3(3)	P(1)-C(31)-C(36)-C(35)	-174.7(4)
C(5)-C(11)-N(12)-Cu(1)	4.0(5)	C(34)-C(35)-C(36)-C(31)	-2.5(8)
C(11)-N(12)-C(13)-C(14)	0.9(9)	C(31)-P(1)-C(41)-C(42)	15.8(5)
Cu(1)-N(12)-C(13)-C(14)	178.3(5)	C(21)-P(1)-C(41)-C(42)	-91.8(5)
N(12)-C(13)-C(14)-C(15)	-2.1(10)	Cu(1)-P(1)-C(41)-C(42)	141.7(4)
C(13)-C(14)-C(15)-C(16)	2.1(9)	C(31)-P(1)-C(41)-C(46)	-163.7(4)
C(14)-C(15)-C(16)-C(11)	-1.0(9)	C(21)-P(1)-C(41)-C(46)	88.7(4)
N(12)-C(11)-C(16)-C(15)	-0.4(7)	Cu(1)-P(1)-C(41)-C(46)	-37.8(4)
C(5)-C(11)-C(16)-C(15)	178.2(5)	C(46)-C(41)-C(42)-C(43)	0.3(8)
C(31)-P(1)-C(21)-C(22)	-86.2(4)	P(1)-C(41)-C(42)-C(43)	-179.3(5)
C(41)-P(1)-C(21)-C(22)	20.0(5)	C(41)-C(42)-C(43)-C(44)	0.5(10)
Cu(1)-P(1)-C(21)-C(22)	144.3(4)	C(42)-C(43)-C(44)-C(45)	-1.3(11)
C(31)-P(1)-C(21)-C(26)	95.0(4)	C(43)-C(44)-C(45)-C(46)	1.4(10)

C(41)-P(1)-C(21)-C(26)	-158.9(4)	C(44)-C(45)-C(46)-C(41)	-0.7(9)
Cu(1)-P(1)-C(21)-C(26)	-34.6(4)	C(42)-C(41)-C(46)-C(45)	-0.2(8)
C(26)-C(21)-C(22)-C(23)	0.4(7)	P(1)-C(41)-C(46)-C(45)	179.4(5)

Empirical formula	$C_{32}H_{26}CuIN_3P$
Formula weight	673.97
Temperature	200(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	C2/c
Unit cell dimensions	a = 25.4203(15) Å
	b = 9.3752(5) Å
	c = 24.4816(16) Å
	$\beta = 91.257(2)^{\circ}$
Volume	5833.1(6) Å ³
Z	8
Density (calculated)	1.535 Mg/m ³
Absorption coefficient	1.888 mm ⁻¹
F(000)	2688
Crystal size	0.300 x 0.200 x 0.080 mm ³
Theta range for data collection	1.603 to 29.218°.
Index ranges	$-34 \le h \le 34, -8 \le k \le 12, -33 \le l \le 33$
Reflections collected	33330
Independent reflections	7848 [R(int) = 0.0579]
Completeness to theta = 25.242°	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7458 and 0.5513
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	7848 / 0 / 343
Goodness-of-fit on F ²	1.128
Final R indices [I>2sigma(I)]	R1 = 0.0550, wR2 = 0.1102
R indices (all data)	R1 = 0.0778, $wR2 = 0.1198$
Extinction coefficient	n/a
Largest diff. peak and hole	1.804 and -1.043 e.Å ⁻³

 Table S17.
 Crystal data and structure refinement for complex 2.

Cu(1)-N(1)	2.062(3)	N(2)-C(3)	1.356(5)
Cu(1)-N(12)	2.116(3)	N(2)-C(6)	1.436(5)
Cu(1)-P(1)	2.1968(11)	C(3)-C(4)	1.367(6)
Cu(1)-I(1)	2.6127(6)	C(4)-C(5)	1.392(6)
N(1)-C(5)	1.345(5)	C(5)-C(12)	1.463(6)
N(1)-N(2)	1.351(5)	C(6)-C(7)	1.379(6)
C(6)-C(11)	1.382(6)	C(22)-C(23)	1.398(8)
C(7)-C(8)	1.395(6)	C(23)-C(24)	1.367(9)
C(8)-C(9)	1.375(7)	C(24)-C(25)	1.376(9)
C(9)-C(10)	1.369(8)	C(25)-C(26)	1.393(7)
C(10)-C(11)	1.396(7)	C(31)-C(32)	1.379(7)
C(12)-N(12)	1.346(5)	C(31)-C(36)	1.393(6)
C(12)-C(16)	1.396(5)	C(32)-C(33)	1.375(8)
N(12)-C(13)	1.345(5)	C(33)-C(34)	1.372(9)
C(13)-C(14)	1.387(6)	C(34)-C(35)	1.369(9)
C(14)-C(15)	1.375(7)	C(35)-C(36)	1.389(8)
C(15)-C(16)	1.390(6)	C(41)-C(46)	1.381(7)
P(1)-C(41)	1.822(4)	C(41)-C(42)	1.383(7)
P(1)-C(31)	1.831(5)	C(42)-C(43)	1.393(7)
P(1)-C(21)	1.834(4)	C(43)-C(44)	1.367(10)
C(21)-C(22)	1.379(6)	C(44)-C(45)	1.363(10)
C(21)-C(26)	1.382(6)	C(45)-C(46)	1.394(7)
N(1)-Cu(1)-N(12)	78.32(13)	C(7)-C(6)-C(11)	121.4(4)
N(1)-Cu(1)-P(1)	120.58(9)	C(7)-C(6)-N(2)	119.3(4)
N(12)-Cu(1)-P(1)	120.43(10)	C(11)-C(6)-N(2)	119.3(4)
N(1)-Cu(1)-I(1)	112.52(9)	C(6)-C(7)-C(8)	119.0(4)
N(12)-Cu(1)-I(1)	102.98(10)	C(9)-C(8)-C(7)	120.3(5)
P(1)-Cu(1)-I(1)	115.60(4)	C(10)-C(9)-C(8)	120.0(4)
C(5)-N(1)-N(2)	105.0(3)	C(9)-C(10)-C(11)	121.0(5)
C(5)-N(1)-Cu(1)	115.1(3)	C(6)-C(11)-C(10)	118.4(5)
N(2)-N(1)-Cu(1)	139.0(2)	N(12)-C(12)-C(16)	122.3(4)

 Table S18.
 Bond lengths [Å] and angles [°] for complex 2.

N(1)-N(2)-C(3)	111.5(3)	N(12)-C(12)-C(5)	114.8(3)
N(1)-N(2)-C(6)	119.8(3)	C(16)-C(12)-C(5)	122.8(4)
C(3)-N(2)-C(6)	128.7(4)	C(13)-N(12)-C(12)	118.2(3)
N(2)-C(3)-C(4)	107.1(4)	C(13)-N(12)-Cu(1)	127.1(3)
C(3)-C(4)-C(5)	105.6(4)	C(12)-N(12)-Cu(1)	114.5(3)
N(1)-C(5)-C(4)	110.8(4)	N(12)-C(13)-C(14)	123.0(4)
N(1)-C(5)-C(12)	116.7(3)	C(15)-C(14)-C(13)	118.3(4)
C(4)-C(5)-C(12)	132.5(4)	C(14)-C(15)-C(16)	120.0(4)
C(15)-C(16)-C(12)	118.1(4)	C(36)-C(31)-P(1)	122.4(4)
C(41)-P(1)-C(31)	101.47(19)	C(33)-C(32)-C(31)	120.2(5)
C(41)-P(1)-Cu(1)	117.21(15)	C(34)-C(33)-C(32)	121.3(6)
C(31)-P(1)-Cu(1)	118.23(15)	C(35)-C(34)-C(33)	119.4(5)
C(21)-P(1)-Cu(1)	109.66(13)	C(34)-C(35)-C(36)	119.9(5)
C(22)-C(21)-C(26)	118.9(4)	C(35)-C(36)-C(31)	120.7(5)
C(22)-C(21)-P(1)	124.1(4)	C(46)-C(41)-C(42)	118.8(4)
C(26)-C(21)-P(1)	116.9(3)	C(46)-C(41)-P(1)	124.3(4)
C(21)-C(22)-C(23)	119.6(5)	C(42)-C(41)-P(1)	116.9(4)
C(24)-C(23)-C(22)	121.0(5)	C(41)-C(42)-C(43)	120.4(6)
C(23)-C(24)-C(25)	119.9(5)	C(44)-C(43)-C(42)	120.4(6)
C(24)-C(25)-C(26)	119.2(6)	C(45)-C(44)-C(43)	119.4(5)
C(21)-C(26)-C(25)	121.4(5)	C(44)-C(45)-C(46)	121.1(6)
C(32)-C(31)-C(36)	118.4(5)	C(41)-C(46)-C(45)	119.8(6)
C(32)-C(31)-P(1)	119.2(4)		

Table S19.	Torsion	angles	[°]	for	comp	lex	2.
------------	---------	--------	-----	-----	------	-----	----

C(5)-N(1)-N(2)-C(3)	0.5(4)	N(2)-N(1)-C(5)-C(12)	179.2(3)
Cu(1)-N(1)-N(2)-C(3)	168.7(3)	Cu(1)-N(1)-C(5)-C(12)	7.7(4)
C(5)-N(1)-N(2)-C(6)	177.8(3)	C(3)-C(4)-C(5)-N(1)	0.0(5)
Cu(1)-N(1)-N(2)-C(6)	-14.0(6)	C(3)-C(4)-C(5)-C(12)	-179.4(4)
N(1)-N(2)-C(3)-C(4)	-0.5(5)	N(1)-N(2)-C(6)-C(7)	-39.9(5)
C(6)-N(2)-C(3)-C(4)	-177.5(4)	C(3)-N(2)-C(6)-C(7)	136.8(5)
N(2)-C(3)-C(4)-C(5)	0.3(5)	N(1)-N(2)-C(6)-C(11)	141.3(4)
N(2)-N(1)-C(5)-C(4)	-0.4(4)	C(3)-N(2)-C(6)-C(11)	-42.0(6)
Cu(1)-N(1)-C(5)-C(4)	-171.8(3)	C(11)-C(6)-C(7)-C(8)	-1.4(7)
N(2)-C(6)-C(7)-C(8)	179.9(4)	P(1)-C(21)-C(26)-C(25)	176.2(4)
C(6)-C(7)-C(8)-C(9)	0.7(8)	C(24)-C(25)-C(26)-C(21)	0.2(8)
C(7)-C(8)-C(9)-C(10)	0.4(8)	C(41)-P(1)-C(31)-C(32)	-145.3(4)
C(8)-C(9)-C(10)-C(11)	-0.8(9)	C(21)-P(1)-C(31)-C(32)	106.6(4)
C(7)-C(6)-C(11)-C(10)	1.0(8)	Cu(1)-P(1)-C(31)-C(32)	-15.6(5)
N(2)-C(6)-C(11)-C(10)	179.8(5)	C(41)-P(1)-C(31)-C(36)	35.1(5)
C(9)-C(10)-C(11)-C(6)	0.1(9)	C(21)-P(1)-C(31)-C(36)	-73.0(5)
N(1)-C(5)-C(12)-N(12)	-7.5(5)	Cu(1)-P(1)-C(31)-C(36)	164.8(4)
C(4)-C(5)-C(12)-N(12)	171.9(4)	C(36)-C(31)-C(32)-C(33)	-0.6(8)
N(1)-C(5)-C(12)-C(16)	171.8(4)	P(1)-C(31)-C(32)-C(33)	179.8(5)
C(4)-C(5)-C(12)-C(16)	-8.7(7)	C(31)-C(32)-C(33)-C(34)	1.5(10)
C(16)-C(12)-N(12)-C(13)	-0.5(6)	C(32)-C(33)-C(34)-C(35)	-1.6(11)
C(5)-C(12)-N(12)-C(13)	178.8(4)	C(33)-C(34)-C(35)-C(36)	0.9(11)
C(16)-C(12)-N(12)-Cu(1)	-175.8(3)	C(34)-C(35)-C(36)-C(31)	0.0(10)
C(5)-C(12)-N(12)-Cu(1)	3.6(4)	C(32)-C(31)-C(36)-C(35)	-0.1(9)
C(12)-N(12)-C(13)-C(14)	0.6(7)	P(1)-C(31)-C(36)-C(35)	179.5(5)
Cu(1)-N(12)-C(13)-C(14)	175.1(4)	C(31)-P(1)-C(41)-C(46)	-99.7(4)
N(12)-C(13)-C(14)-C(15)	0.0(7)	C(21)-P(1)-C(41)-C(46)	8.6(5)
C(13)-C(14)-C(15)-C(16)	-0.5(7)	Cu(1)-P(1)-C(41)-C(46)	130.0(4)
C(14)-C(15)-C(16)-C(12)	0.5(6)	C(31)-P(1)-C(41)-C(42)	78.4(4)
N(12)-C(12)-C(16)-C(15)	0.0(6)	C(21)-P(1)-C(41)-C(42)	-173.3(4)
C(5)-C(12)-C(16)-C(15)	-179.3(4)	Cu(1)-P(1)-C(41)-C(42)	-51.9(4)
C(41)-P(1)-C(21)-C(22)	-102.3(4)	C(46)-C(41)-C(42)-C(43)	3.5(8)

C(31)-P(1)-C(21)-C(22)	3.8(4)	P(1)-C(41)-C(42)-C(43)	-174.7(5)
Cu(1)-P(1)-C(21)-C(22)	131.5(4)	C(41)-C(42)-C(43)-C(44)	-1.2(9)
C(41)-P(1)-C(21)-C(26)	82.3(4)	C(42)-C(43)-C(44)-C(45)	-1.7(9)
C(31)-P(1)-C(21)-C(26)	-171.6(3)	C(43)-C(44)-C(45)-C(46)	2.2(9)
Cu(1)-P(1)-C(21)-C(26)	-44.0(4)	C(42)-C(41)-C(46)-C(45)	-3.0(8)
C(26)-C(21)-C(22)-C(23)	-0.6(7)	P(1)-C(41)-C(46)-C(45)	175.1(4)
P(1)-C(21)-C(22)-C(23)	-176.0(4)	C(44)-C(45)-C(46)-C(41)	0.1(8)
C(21)-C(22)-C(23)-C(24)	-0.1(9)		
C(22)-C(23)-C(24)-C(25)	0.8(9)		
C(23)-C(24)-C(25)-C(26)	-0.9(9)		
C(22)-C(21)-C(26)-C(25)	0.5(7)		