Electronic Supplementary Information

CeO₂ Decorated Bimetallic Phosphide Nanowire Arrays for Enhanced Oxygen Evolution Reaction Electrocatalysis via Interface

Engineering

Yikang Cong,^a Xinnan Chen,^a Yan Mei,^a Jun Ye,^a Ting-Ting Li^{a,b,*} ^aSchool of Materials Science and Chemical Engineering, Ningbo 315211, China. ^bKey Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Ningbo University, Ningbo 315211, China. *Corresponding author: litingting@nbu.edu.cn (T.-T. Li)

Fig. S1. XRD pattern of CoNiCHH/NF.

Fig. S2. SEM image of CoNiCHH/NF.

Fig. S3. XRD pattern of CoNi-MOF/NF

Fig. S4. SEM image of CoNi-MOF/NF.

Fig. S5. EDX spectrum and elemental composition in $Co_{0.4}Ni_{1.6}P$ -CeO₂/NF.

Fig. S6. TEM image of Co_{0.4}Ni_{1.6}P.

Fig. S7. XRD pattern of MOF-derived Ni₂P/NF.

Fig. S8. The LSV plots of $Co_{0.4}Ni_{1.6}P$ -CeO₂/NF, $Co_{0.4}Ni_{1.6}P$ /NF, and IrO_2 /NF in a neutral solution (0.1 M PBS, pH 6.8).

Fig. S9. Cyclic voltammograms of $Co_{0.4}Ni_{1.6}P$ -CeO₂/NF measured at different scan rates.

Fig. S10. Cyclic voltammograms of Co_{0.4}Ni_{1.6}P/NF measured at different scan rates.

Fig. S11. Cyclic voltammograms of CoNi-MOF/NF measured at different scan rates.

Fig. S12. Cyclic voltammograms of Ni₂P/NF measured at different scan rates.

Fig. S13. OER polarization plots of $Co_{0.4}Ni_{1.6}P$ -CeO₂/NF, $Co_{0.4}Ni_{1.6}P$ /NF, and CoNi-MOF/NF normalized by the related ECSA values.

Fig. S14. The LSV curves recorded before and after 3000 cycles.

Fig. S15. SEM image of $Co_{0.4}Ni_{1.6}P$ -CeO₂/NF after long-term stability test.

Fig. S16. Ni 2p XPS spectrum of $Co_{0.4}Ni_{1.6}P$ -CeO₂/NF after 20 h stability test.

Fig. S17. P 2p XPS spectrum of $Co_{0.4}Ni_{1.6}P$ -CeO₂/NF after 20 h stability test.

Fig. S18. O 1s XPS spectrum of Co_{0.4}Ni_{1.6}P-CeO₂/NF after 20 h stability test.

Fig. S19. Chronoamperometry curve of $Co_{0.4}Ni_{1.6}P/NF$ at a fixed potential of 1.6 V vs RHE for 20 h.

Fig. S20. The amounts of the theoretically calculated and experimentally measured O_2 vs electrolysis time for $Co_{0.4}Ni_{1.6}P$ -CeO₂/NF at a constant potential of 1.6 V vs RHE during the initial 2 h.

Electrocatalysts	Electrolyte	$\eta_{10} \left(mV \right)$	η ₁₀₀ (mV)	Tafel slope (mV dec ⁻¹)	Ref.
$Co_{0.4}Ni_{1.6}P\text{-}CeO_2/NF$	1 М КОН	268	343	79.3	This work
CeO ₂ @Co ₂ N	1 M KOH	219	345	95.8	1
FeOOH/CeO ₂	1 М КОН	230	_	92.3	2
CeO _x /NiCo ₂ S ₄	1 M KOH	270	~530	126	3
CeO _x /CoS@L-CeO ₂	1 M KOH	238	~370	42	4
CeO ₂ /CoSe ₂	0.1 M KOH	288	_	44	5
CeO _x /CoO _x	1 M NaOH	313	_	66	6
CoP/CeO ₂	1 M KOH	224	~380	90.3	7
h-Co ₃ O ₄ /CeO ₂ @N-CNFs	0.1 M KOH	310	_	89	8
Cu@CeO ₂ @NFC	1 M KOH	230.8	~340	32.7	9
CeO ₂ /Co ₃ O ₄	1 M KOH	265	_	68.1	10
Ce-MnCo ₂ O ₄	1 M KOH	337	—	125	11
CeO _x /CoS	1 М КОН	269	418	50	12
V-CoP@a-CeO	1 M KOH	230	480	48.1	13
Ce doping NiFe-LDH	1 М КОН	242	~380	34	14
CeO ₂ /Co(OH) ₂	1 M KOH	410	~595	66	15
Ce-NiO-L	1 M KOH	382	~580	118.7	16
CeO ₂ @CeNC	1 M KOH	235	430	128.8	17
CeO _x /CoP/NF	1 M KOH	264	380	82	18

Table S1. Comparisons of the electrocatalytic activities and stabilities of $Co_{0.4}Ni_{1.6}P$ -CeO₂/NF and other CeO₂-based composites studied in previous studies.

References

- 1 J. Zhang, W. He, H. B.Aiyappa, T. Quast, S. Dieckhöfer, D. Öhl, Y. T. Chen, J. Masa and W. Schuhmann, *Adv. Mater. Interfaces*, 2021, **8**, 2100041.
- 2 J. X. Feng, S. H. Ye, H. Xu, Y. X. Tong and G. R. Li, Adv. Mater., 2016, 28, 4698-4703.
- 3 X. Wu, Y. Yang, T. Zhang, B. Wang, H. Xu, X. Yan and Y. Tang, *ACS Appl. Mater. Interf.*, 2019, **11**, 39841-39847.
- 4 H. Xu, Y. Yang, X. Yang, J. Cao, W. Liu and Y. Tang, *J. Mater. Chem. A*, 2019, 7, 8284-8291.
- 5 Y. R. Zheng, M. R. Gao, Q. Gao, H. H. Li, J. Xu, Z. Y. Wu and S. H. Yu, Small, 2015, **11**, 182-188.
- 6 J. H. Kim, K. Shin, K. Kawashima, D. H. Youn, J. Lin, T. E. Hong, Y. Liu, B. R. Wygant, J. Wang and G. Henkelman, ACS Catal., 2018, 8, 4257-4265.
- 7 M. Li, X. Pan, M. Jiang, Y. Zhang, Y. Tang and G. Fu, *Chem. Eng. J.*, 2020, 395, 125160.
- 8 T. Li, S. Li, Q. Liu, Y. Tian, Y. Zhang, G. Fu and Y. Tang, ACS Sust. Chem. Eng., 2019, 7, 17950-17957.
- 9 J. Xia, H. Zhao, B. Huang, L. Xu, M. Luo, J. Wang, F. Luo, Y. Du and C. H. Yan, *Adv. Funct. Mater.*, 2020, **30**, 1908367.
- 10 B. Qiu, C. Wang, N. Zhang, L. Cai, Y. Xiong and Y. Chai, *ACS Catal.*, 2019, **9**, 6484-6490.
- 11 X. Huang, H. Zheng, G. Lu, P. Wang, L. Xing, J. Wang and G. Wang, ACS Sustainable Chem. Eng., 2019, 7, 1169-1177.
- 12 H. Xu, J. Cao, C. Shan, B. Wang, P. Xi, W. Liu and Y. Tang, *Angew. Chem., Int. Ed.*, 2018, **57**, 8654-8658.
- 13 L. Yang, R. Liu and L. Jiao, Adv. Funct. Mater., 2020, 30, 1909618.
- 14 H. Xu, C. Shan, X. Wu, M. Sun, B. Huang, Y. Tang and C. H. Yan, *Energy Environ. Sci.*, 2020, **13**, 2949-2956.
- 15 M. C. Sung, G. H. Lee and D. W. Kim, J. Alloys Compd., 2019, 800, 450-455.
- 16 W. Gao, Z. Xia, F. Cao, J. C. Ho, Z. Jiang and Y. Qu, Adv. Funct. Mater., 2018, 8, 1706056.
- 17 B. Wang, P. Xi, C. Shan, H. Chen, H. Xu, K. Iqbal, W. Liu and Y. Tang, *Adv. Mater. Interfaces*, 2017, **4**, 1700272.
- 18 T. Zhang, X. Wu, Y. Fan, C. Shan, B. Wang, H. Xu and Y. Tang, *ChemNanoMat*, 2020, 6, 1119-1126.