ESI

Tungsten(VI) selenide tetrachloride, $WSeCl_4$ – synthesis, properties, coordination complexes and application for CVD growth of WSe_2 thin films

Victoria K. Greenacre, Andrew L. Hector, Ruomeng Huang, William Levason, Vikesh Sethi and Gillian

Reid

Compound	WSeCl ₄	[WSeCl ₄ (OPPh ₃)]	[WSeCl ₄ (DMF)]	[(WSeCl ₄) ₂ (4,4'-
				bipy)]·3C ₆ H ₆
Formula	Cl₄SeW	C ₁₈ H ₁₅ Cl ₄ OPSeW	C ₉ H ₁₃ Cl ₄ NOSeW	$C_{28}H_{26}Cl_8N_2Se_2W_2$
М	404.61	682.88	555.81	1199.73
Crystal system	monoclinic	monoclinic	monoclinic	triclinic
Space group (no)	P2 ₁ /n (14)	P2 ₁ /n (14)	C2/c (15)	P-1 (2)
a /Å	8.8639(2)	12.59105(17)	18.8765(10)	6.03153(11)
b/Å	12.4149(2	11.06907(14)	7.3681(3)	15.4384(4)
c /Å	12.1003(3)	15.00109(19)	22.8710(13)	20.1476(5)
α/°	90	90	90	103.815(2)
β/°	111.125(2)	96.3449(12)	104.559(6)	94.9132(17)
γ /°	90	90	90	98.3755(17)
U /Å ³	1242.08(5)	2077.91(5)	3078.8(3)	1788.18(7)
Z	8	4	8	2
μ(Mo-K _α)/mm ⁻¹	55.880	7.908	10.546	9.084
F(000)	1408	1288	2064	1120
Total number refins	18376	56394	20205	52666
R _{int}	0.055	0.041	0.075	0.082
Unique reflns	2207	6896	3969	8594
No. of params, restraints	109, 0	235, 0	180, 55	379, 0
GOF	1.017	1.019	1.053	1.058
$R_1, wR_2 [I > 2\sigma(I)]^{b}$	0.016, 0.039	0.021, 0.037	0.040, 0.089	0.041, 0.096
R ₁ , wR ₂ (all data) ^b	0.018, 0.040	0.027, 0.038	0.052, 0.093	0.050, 0.100

Table S1 Crystallographic parameters.

^a common data: T = 100 K; wavelength (Mo-K_α) = 0.71073 Å; θ(max) = 27.5°; ^b R₁ = Σ||F_o| - |F_c||/Σ|F_o|; wR₂ = $[\Sigma w(F_o^2 - F_c^2)^2 / \Sigma wF_o^4]^{1/2}$.

Table S1 Cont.

Compound	[WSeCl ₄ (MeCN)]	[(WSeCl ₄) ₂ (dioxane)]	[(WSeCl ₄) ₂ (SeMe ₂)]	$[{WCl_3(SMe_2)}_2(\mu-Se)(\mu-Se_2)]$
Formula	C ₂ H ₃ Cl ₄ NSeW	C ₄ H ₈ Cl ₈ O ₂ SeW ₂	$C_2H_6Cl_8Se_3W_2$	$C_4H_{12}CI_6S_2Se_3W_2$
М	445.66	897.32	918.25	941.54
Crystal system	monoclinic	monoclinic	triclinic	orthorhombic
Space group (no)	P2 ₁ /m (11)	C ₁ /c (15)	P-1 (2)	Pnma (62)
a /Å	5.8784(2)	22.1170(4)	6.6025(2)	13.58820(13)
b /Å	7.8378(4)	6.51400(10)	10.2899(5)	19.5279(2)
c /Å	14.8140(6)	11.5767(2)	12.2583(6)	6.69716(7)
α/°	90	90	89.211(4)	90
β/°	88.834(3)	90.841(2)	85.388(3)	90
γ /°	90	90	81.076(3)	90
U /Å ³	682.39(5)	1667.68(5)	820.07(6)	1777.09(3)
Z	2	4	2	4
μ(Mo-K _α)/mm ⁻¹	11.860	19.419	21.945	40.932
F(000)	396	1600	808	1680
Total number reflns	17488	17262	9411	30236
R _{int}	0.062	0.073	0.035	0.038
Unique reflns	1882	2152	4223	1743
No. of params, restraints	50, 0	82, 0	138, 0	84, 0
GOF	1.059	1.071	1.012	1.188
$R_1, wR_2 [I > 2\sigma(I)]^b$	0.039, 0.103	0.021, 0.049	0.036, 0.072	0.030, 0.071
R_1 , w R_2 (all data) ^b	0.046, 0.109	0.023, 0.050	0.046, 0.078	0.030, 0.071

Fig. S1. Rietveld fit to the PXRD pattern of WSeCl₄. Blue crosses mark the data points, green continuous line the fit, cyan line the difference and blue tick marks the allowed reflecton positions. Strong peaks from the Al sample holder at 38.2 and 44.5 ° were excluded. The fit used the crystal structure described in Table S1 (P2₁/n) with a = 8.9371(5), b = 12.5479(12), c = 12.2271(9) Å and β = 111.2098(17) °.

Fig. S3. ¹H NMR spectrum of [WSeCl₄(MeCN)] (CD₂Cl₂)

Fig. S4. IR Spectrum of [WSeCl₄(MeCN)] (Nujol)

Fig. S5. ¹H NMR spectrum of [WSeCl₄(thf)] (CD₂Cl₂)

Fig. S6. IR Spectrum of [WSeCl₄(thf)] (Nujol)

Fig. S7. ¹H NMR spectrum of [WSeCl₄(OPPh₃)] (CD₂Cl₂)

Fig. S8. ³¹P{¹H} NMR spectrum of [WSeCl₄(OPPh₃)] (CD₂Cl₂)

Fig. S9. IR Spectrum of [WSeCl₄(OPPh₃)] (Nujol)

Fig. S10. ¹H NMR spectrum of [WSeCl₄(DMF)] (C₆D₆)

Fig. S11. IR Spectrum of [WSeCl₄(DMF)] (Nujol)

Fig. S12. ¹H NMR Spectrum of [(WSeCl₄)₂(4,4'-bipy)] (CD₂Cl₂)

Fig. S13. IR Spectrum of [(WSeCl₄)₂(4,4'-bipy)] (Nujol)

Fig. S14. IR Spectrum of [WSeCl₄(py)] (Nujol)

Fig. S15. ¹H NMR Spectrum of [WSeCl₄(py)] (CD₂Cl₂)

Fig. S16. IR spectrum of [WSeCl₄(2,2'-bipy)] (Nujol)

Fig. S17. ¹H NMR spectrum of [WSeCl₄(2,2'-bipy)] (CD₂Cl₂)

Fig. S18. IR spectrum of [(WSeCl₄)(µ-dppmO₂)] (Nujol)

Fig. S19. ¹H NMR spectrum of [(WSeCl₄)(µ-dppmO₂)] recorded *in situ* in C₆D₆

Fig. S20. ${}^{31}P{}^{1}H$ NMR spectrum of [(WSeCl₄)(μ -dppmO₂)] (C₆D₆)

* Decomposition product

Fig. S21. IR spectrum of [(WSeCl₄)₂(1,4 dioxane)] (Nujol)

Fig. S22. ¹H NMR spectrum of [(WSeCl₄)₂(1,4 dioxane)] (C₆D₆)

Fig. S23. IR spectrum of [WSeCl₄(SeMe₂)] (Nujol)

Fig. S24. ¹H NMR spectrum of [WSeCl₄(SeMe₂)] (C₆D₆)

Fig. S25. $^{77}Se\{^{1}H\}$ NMR spectrum of [WSeCl₄(SeBu₂)] (298 K)

Fig. S26. ⁷⁷Se{¹H} NMR spectrum of [WSeCl₄(SeBu₂)] (183 K)

Fig. S27. IR spectrum of [WSeCl₄(SeBu₂)] (Nujol)

Fig. S28. ¹H NMR spectrum of [WSeCl₄(SeBu₂)] (C₆D₆)

Fig. S29 Grazing incidence XRD patterns from WSe_2 thin films deposited at different temperatures in this work.

17

Density Functional Theory (DFT) calculations:

WSeCl ₄	X-ray		E-diffraction*	DFT**	Literature calculations	
W=Se (Å)	2.2099(4)	2.2128(4)	2.203 (4)	2.24460	2.17 ^(a)	2.260 ^(b)
W-Cl (Å)	2.2944(9)	2.2689(8)	2.284 (3)	2.37178	2.33 ^(a)	2.363 ^(b)
	2.3048(8)	2.2762(9)		2.38413		
	2.3045(8)	2.3419(8)		2.36433		
	2.3038(9)	2.3949(8)		2.36069		
SeCl (Å)	3.488	3.471	3.545 (9)	3.58184		
	3.500	3.445		3.58279		
	3.508	3.468		3.58233		
	3.488	3.470		3.58269		
ClCl (Å)	3.181	3.220	3.129 (6)	3.18320		
	3.203	3.254		3.18395		
	3.185	3.205		3.18327		
	3.187	3.255		3.18379		
ClCl (Å)	4.516	4.597	4.425 (9)	4.50179		
	4.505	4.549		4.50266		
Se-W-Cl (°)	101.46	101.49	104.4 (3)	104.13557	105 ^(a)	103.6 ^(b)
	101.45	101.18		104.18248		
	101.98	98.24		104.15197		
	101.66	97.65		104.16753		
CI-W-CI (°)	87.68	88.58	86.5 (2)	86.55511		
	87.75	91.45		86.58812		
	87.30	88.32		86.56221		
	88.06	85.15		86.57228		

Table S2: Comparative structural data for WSeCl₄

* Diffraction data: <u>https://pubs.acs.org/doi/pdf/10.1021/ic00139a006</u>

** DFT (6-311G* on Se, Cl and LanL2dz on W)

(a) *ab initio* molecular quantum chemistry calculations using GAMESS (Ref. 1) (b) DET calculations using ADE program (Ref. 2)

^(b) DFT calculations using ADF program (Ref. 2)

eV	WSCI ₄	eV	WSeCl ₄
LUMO+1 -4.50		LUMO+1 -4.50	
LUMO -5.49		LUMO -5.34	
HOMO -8.74		HOMO -8.54	
HOMO-1 -8.93		HOMO-1 -8.55	
HOMO-2 -8.93		HOMO-2 -8.65	

Fig. S30: Frontier molecular orbitals of $WSCl_4$ and $WSeCl_4$

Table S3: Comparative structural data for $WECl_4(OPPh_3)$ (E = S, Se) bond distances (Å)

	[WSCl₄(OPPh₃)]		[WSeCl ₄ (OPPh ₃)]	
	X-ray [*]	DFT	X-ray	DFT
W-E	2.0938(6)	2.11048	2.2321(2)	2.24460
W-Cl	2.3196(6)	2.36959	2.3514(5)	2.37178
	2.3141(6)	2.36256	2.3577(5)	2.38413
	2.23488(5)	2.35912	2.3217(5)	2.36433
	2.3447(7)	2.38193	2.3218(5)	2.36069
W-O	2.163(2)	2.14443	2.1669(14)	2.14717

*data from Ref. 3

Table S4: Energies of monomers and dimers of WECl₄ (E = S, Se)

	au
WSCl ₄	-2307.141894
WS dimer	-4614.313648
WSeCl ₄	-4310.482002
WSe dimer	-8620.993048

Table S5: Energies of $[WECl_4(OPPh_3)]$ (E = S, Se)

	au
OPPh ₃	-1111.827444
WSCl ₄	-2307.141894
WSeCl ₄	-4310.482002
[WSCl ₄ (OPPh ₃)]	-3419.030719
[WSeCl ₄ (OPPh ₃)]	-5422.369043

References

- 1. M. T. Benson, T. R. Cundari, S. J. Lim, H. D. Nguyen and K. Pierce-Beaver, J. Am. Chem. Soc., 1994, **116**, 3955.
- 2. Ò. González-Blanco, V. Branchadell, K. Monteyne and T. Ziegler, *Inorg. Chem.*, 1998, **37**, 1744.
- 3. V. K. Greenacre, A. L. Hector, W. Levason, G. Reid, D. E. Smith and L. Sutcliffe, *Polyhedron*, 2019, **162**, 14.