Supporting Information for

A Visible-Light and Temperature Responsive Host-Guest System: Photoisomerization of a Ruthenium Complex and Inclusion Complex Formation with Cyclodextrins

Masanari Hirahara,*^a Shota Furutani,^a Hiroki Goto,^b Keiichi Fujimori,^a Takayo, Kawakami-Moriuchi^a

^a Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1

Omiya, Asahi Ward, Osaka, 535-8585

^b Department of Applied Chemistry, School of Applied Science, National Defense Academy of Japan,

1-10-20 Hashirimizu, Yokosuka, Kanagawa, 239-8686

Supporting Information

Contents

Figure S1— ¹ H NMR spectra of <i>proximal</i> -1 during titration experiments with α -CD	S3
Figure S2— ¹ H NMR spectra of <i>proximal</i> -1 during titration experiments with β -CD	S4
Figure S3— ¹ H NMR spectra of <i>distal</i> -1 during titration experiments with α -CD	S5
Figure S4— ¹ H NMR spectra of <i>distal</i> -1 during titration experiments with β-CD	S6
Figure S5— ¹ H NMR spectra of <i>proximal</i> -[Ru(C ₂ tpy)(C ₂ pyqu)OH ₂] ²⁺ during titration experiments with γ -CD	S 7
Figure S6— ¹ H NMR spectra of <i>proximal</i> -[Ru(tpy)(C_{10} pyqu)OH ₂] ²⁺ during titration experiments with γ -CD	S 8
Figure S7—Benesi–Hildebrand plots from ¹ H NMR titration between <i>proximal</i> -1 and γ-CD	S9
Figure S8—Benesi–Hildebrand plots from ¹ H NMR titration between <i>proximal</i> -1 and β-CD	S10
Figure S9—Benesi–Hildebrand plots from ¹ H NMR titration between <i>proximal</i> -1 and α-CD	S11
Figure S10-Benesi-Hildebrand plots from ¹ H NMR titration between <i>proximal</i> -[Ru(C ₂ tpy)(C ₂ pyqu)OH ₂] ²⁺ and γ	-CD
	S12

and γ-CD
S13
S14
S15
S16
S17
resence of
S18
S19
S20
S21
S22

Figure S1. (A) ¹H NMR spectra of *proximal*-1 (1.55 mM) during titration experiments with α -CD in D₂O, CD₃OD, and TFE mixed solvent (v/v/v = 70:40:2). Peaks of H_o, H_n, and H_c protons are highlighted. (B) Plots of chemical shifts of H_c proton verses equivalents of α -CD.

Figure S2. (A) ¹H NMR spectra of *proximal*-1 (0.84 mM) during titration experiments with β -CD in D₂O, CD₃OD, and TFE mixed solvent (v/v/v = 70:40:2). Peaks of H_o, H_n, and H_c protons are highlighted. (B) Plots of chemical shifts of H_c proton verses equivalents of β -CD.

Figure S3. (A) ¹H NMR spectra of *proximal*-1 and *distal*-1 (total concentration: 1.36 mM, *proximal*-1 : *distal*-1 = 36 : 64) during titration experiments with α -CD in mixed aqueous solutions (D₂O : CD₃OD : TFE = 70 : 50 : 2). Peaks of H_n, H_j, and H_k protons for *distal*-1 are highlighted. (B) Plots of chemical shifts of H_i proton verses equivalents of α -CD.

Figure S4. (A) ¹H NMR spectra of *proximal*-1 and *distal*-1 (total concentration: 0.88 mM, *proximal*-1 : *distal*-1 = 36 : 64) during titration experiments with β -CD in mixed aqueous solutions (D₂O : CD₃OD : TFE = 70 : 40 : 2). Peaks of H_n, H_j, and H_k protons for *distal*-1 are highlighted. (B) Plots of chemical shifts of H_i proton verses equivalents of β -CD, respectively.

Figure S5. (A) ¹H NMR spectra of *proximal*-[Ru(C₂tpy)(C₂pyqu)OH₂]²⁺ (1.63 mM) during titration experiments with γ -CD in D₂O, CD₃OD, and TFE mixed solvent (v/v/v = 70:40:2). (B) Plots of chemical shifts of H_r proton verses equivalents of γ -CD. Small peaks correspond to *distal*-[Ru(C₂tpy)(C₂pyqu)OH₂]²⁺.¹

Figure S6. (A) ¹H NMR spectra of *proximal*-[Ru(tpy)(C₁₀pyqu)OH₂]²⁺ (1.58 mM) during titration experiments with γ -CD in D₂O, CD₃OD, and TFE mixed solvent (v/v/v = 70:40:2). (B) Plots of chemical shifts of H_r proton verses equivalents of γ -CD.

Figure S7. Benesi–Hildebrand plots from ¹H NMR titration between *proximal*-1 and γ -CD.

Figure S8. Benesi–Hildebrand plots from ¹H NMR titration between *proximal*-1 and β -CD.

Figure S9. Benesi–Hildebrand plots from ¹H NMR titration between *proximal*-1 and α -CD.

Figure S10. Benesi–Hildebrand plots from ¹H NMR titration between *proximal*- $[Ru(C_2tpy)(C_2pyqu)OH_2]^{2+}$ and γ -CD.

Figure S11. Benesi–Hildebrand plots from ¹H NMR titration between *proximal*- $[Ru(tpy)(C_{10}pyqu)OH_2]^{2+}$ and γ -CD.

Figure S12. Benesi–Hildebrand plots from ¹H NMR titration between *distal*-1 and γ -CD.

Figure S13. Benesi–Hildebrand plots from ¹H NMR titration between *distal*-1 and β -CD.

Figure S14. Benesi–Hildebrand plots from ¹H NMR titration between *distal*-1 and α -CD.

Figure S15. ¹H NMR spectra during thermal back isomerization from *distal-1* to *proximal-1* at 293 K. The sample solution was prepared by light irradiation to an aqueous solution of *proximal-1* (1.5 mM) in mixed aqueous solution (D_2O : CD_3OD : TFE = 70 : 50 : 2). H_k proton of *distal-1* and H_c proton of *proximal-1* were highlighted with green and orange, respectively. The progress of the reaction was monitored in the dark.

Figure S16. Kinetic traces for thermal back isomerization from *distal-1* to *proximal-1* at various temperatures. (A) Traces at 293, 303, 313, and 323 K in the absence of a host molecule. (B) Traces at 293, 308, 323, and 333 K in the presence of 5 equiv. of γ -CD. The concentration of distal-1 was estimated based on the integration of an Hc proton for *proximal-1* and an H_k proton for *distal-1*, respectively.

Figure S17. (A) Arrhenius and (B) Eyring plots for the thermal-back-isomerization from *distal*-1 to *proximal*-1. Plots for the isomerization in the absence and presence of γ -CD are plotted with black square and red circle, respectively.

Figure S18. Kinetic traces for thermal back isomerization from *distal*-1 to *proximal*-1 at 333K in the absence or presence of cyclodextrins. The sample solution of *distal*-1 and *proximal*-1 in the photostationary state was prepared by light irradiation to an aqueous solution of *proximal*-1 in the mixed aqueous solution (D₂O : CD₃OD : TFE = 70 : 50 : 2) prior to the measurements. Black: in the absence of cyclodextrins ($c_{Ru} = 1.52 \text{ mM}$), red: in the presence of γ -CD ($c_{Ru} = 1.38 \text{ mM}$, [γ -CD] = 7.1 mM), blue; in the presence of β -CD ($c_{Ru} = 0.70 \text{ mM}$, [β -CD] = 3.5 mM), and green; in the presence of α -CD ($c_{Ru} = 1.35 \text{ mM}$, [α -CD] = 6.35 mM). The initial concentration was normalized for comparison. $c_{Ru} = [proximal-1] + [distal-1]$.

Table S1. Summary of thermodynamic parameters for thermal-back-isomerization from *distal-1* to *proximal-1* in the absence and presence of γ -CD (5 equiv.)

	$E_{\rm act}$ / kJ mol ⁻¹	ΔH^{\ddagger} / kJ mol ⁻¹	$\Delta S^{\ddagger} / J \text{ mol}^{-1} \text{ K}^{-1}$	ΔG^{\ddagger} / kJ mol ⁻¹
With γ-CD	109 ± 1	106 ± 1	22 ± 2	99 ± 1
w/o γ-CD	109 ± 5	106 ± 5	21±17	100 ± 7

References

1. Hirahara, M.; Goto, H.; Yagi, M.; Umemura, Y., A multi-stimuli responsive ruthenium complex for catalytic water oxidation. *Chem. Commun.* **2020**, *56* (84), 12825-12828.