Supporting Information Multi-function Broad-Band Emission Ba_{4-x-} _ySr_yLa₆O(SiO₄)₆:xEu²⁺ Phosphor for White LED, and Anti-counterfeiting

Zhi Wang¹, Xu Li^{1,2}, Mingyang Li¹, Jinxing Zhao¹, Zhenyang Liu¹, Dawei Wang³, Li Guan^{4*}, Fenghe Wang^{1,2*}*

¹ Hebei Key Laboratory of Optic-Electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, PR China

² National-Local Joint Engineering Laboratory of New Energy Photoelectric Devices, Institute of

Life Science and Green Development, Hebei University, Baoding, 071002, PR China

³ Hebei Key Laboratory of Semiconductor Lighting and Display Critical Materials, Hebei Ledphor

optoelectronics technology Co., LTD. Baoding, 071000, PR China

⁴ Key Laboratory of High-precision Computation and Application of Quantum Field Theory of Hebei Province, Hebei University, Baoding 071002, PR China

^{*} Corresponding author: <u>lguan@hbu.edu.cn</u> (L. Guan); <u>fenghe_wang@hotmail.com</u> (F. H. Wang); <u>lixcn@sina.com</u> (X. Li)

Fig.S1 (a) EDS images and (b) SEM image of BLOS:0.28Eu2+; (c-g) Elemental mapping images of Ba, La, O, Si, and Eu for the selected particle, respectively.

2 S1. Main Crystallographic Parameters for Ba _{4-x} La ₆ O(SiO ₄) ₆ :xEu ²⁺ (x = 0.016 - 0.48) f Program Rietveld Refinement								
concentr	<i>x</i> =0.016	<i>x</i> =0.04	x=0.08	<i>x</i> =0.28	<i>x</i> =0.48			
crystal	hexagon	hexagon	hexagon	hexagon	hexagon			
space	$P 6_3/m$	$P 6_3 / m$	$P 6_3 / m$	$P 6_3 / m$	$P 6_3 / m$			
a = b (Å)	9.807	9.8063	9.8051	9.7904	9.7795			
(Å)	7.3454	7.3405	7.3388	7.3231	7.308			
$V(\text{\AA}^3)$	611.82	611.316	611.021	607.893	605.285			
20	10 - 75°	10 - 75°	10 - 75°	10 - 75°	10 - 75°			
R_{wp} (%)	10.92	9.61	11.62	10.62	11.97			
R_p (%)	6.95	6.49	7.15	6.75	7.52			
CHI ²	4.476	3.489	5.086	4.342	6.156			

.....

Fig.S2 (a–e) Rietveld refinement of the powder XRD profiles of BLOS:xEu (x = 0.016, 0.04, 0.08, 0.28, 0.48), respectively.

Fig.S3 Normalized PL spectrum of series phosphors BLOS:xEu.

Fig.S4 (a) The temperature-dependent PL spectra of BLOS:0.08Eu phosphors at temperatures of 293–453 $K(\lambda_{ex} = 376 \text{ nm})$; (b) The plot of $\ln[I_0/I - 1]$ versus 1/kT for BLOS:0.08Eu.

Fig.S5 (a) XRD patterns compared to the standard pattern of $Ba_{3,92-y}Sr_yLa_6O(SiO_4)_6$:0.08Eu (y = 0-3.5) and (b) view of the peak shift at $30.1-31^\circ$; (c) evolution of lattice parameters(a, b, c) and the unit cell volumes (V) for $Ba_{3,92-y}Sr_yLa_6O(SiO_4)_6$:0.08Eu (y = 0, 0.5, 1.5, 2.5, 3.5); (d–h) Rietveld refinement of the powder XRD profiles of $Ba_{3,92-y}Sr_yLa_6O(SiO_4)_6$:0.08Eu.

concentration	<i>y</i> =0	<i>y</i> =0.5	<i>y</i> =1.5	<i>y</i> =2.5	<i>y</i> =3.5
crystal system	hexagonal	hexagonal	hexagonal	hexagonal	hexagonal
space group	$P 6_3/m$	$P 6_3/m$	$P 6_3/m$	$P 6_3/m$	$P 6_3/m$
<i>a =b</i> (Å)	9.8035	9.78	9.7493	9.7329	9.728
<i>c</i> (Å)	7.3405	7.3112	7.2743	7.2553	7.249
$V(Å^3)$	610.971	605.615	598.777	595.209	594.088
2θ interval	10 - 75°	10 - 75°	10 - 75°	10 - 75°	10 - 75°
R_{wp} (%)	10.69	10.08	10.14	8.54	7.95
R_p (%)	6.66	6.57	6.61	5.78	5.46
CHI ²	5.319	4.898	5.08	3.644	3.604

Table S2. Main Crystallographic Parameters for $Ba_{3.92-y}Sr_yLa_6O(SiO_4)_6:0.08Eu^{2+}$ (y = 0 - 3.5)from the GSAS Program Rietveld Refinement

Fig.S6 (a) EDS images and (b) SEM image of Ba_{1.42}Sr_{2.5}La₆O(SiO₄)₆:0.08Eu; (c-g) Elemental mapping images of Ba, Sr, La, O and Eu for the selected particle, respectively.

Fig.S7 (a) PL spectra of $Ba_{3.92-y}Sr_yLa_6O(SiO_4)_6:0.08Eu^{2+}$ (y = 0-3.5) phosphor; (b) Normalized PL intensity of $Ba_{3.92-y}Sr_yLa_6O(SiO_4)_6:0.08Eu^{2+}$ (y = 0-3.5) phosphor at different temperatures.

Fig.S8 (a) PL spectra of $Ba_{0.42}Sr_{3.5}La_6O(SiO_4)_6$: $0.08Eu^{2+}$ phosphors at different excitation wavelengths; Normalized PL spectra of $Ba_{0.42}Sr_{3.5}La_6O(SiO_4)_6$: $0.08Eu^{2+}$ phosphors at different excitation wavelengths.

Fig.S9 The quantum efficiency of $Ba_{3.92}La_6O(SiO_4)_6$:0.08Eu phosphors(a) $Ba_{0.42}Sr_{3.5}La_6O(SiO_4)_6$:0.08Eu phosphors(b); The excited-state lifetime dependence on temperature of $Ba_{3.92}La_6O(SiO_4)_6$:0.08Eu phosphors(c) $Ba_{0.42}Sr_{3.5}La_6O(SiO_4)_6$:0.08Eu phosphors(d); The chemical stability of $Ba_{3.92}La_6O(SiO_4)_6$:0.08Eu phosphors(e) $Ba_{0.42}Sr_{3.5}La_6O(SiO_4)_6$:0.08Eu phosphors(f).

	Ba _{3.92} La ₆ O(Si	O ₄) ₆ :0.08Eu	Ba _{3.92} La ₆ O(SiO ₄) ₆ :0.08Eu		
	before aging	after aging	before aging	after aging	
Normalized intensity	1	0.255	1	0.67	
FWHM (nm)	62.14	62.91	66.27	67.3	
CIE	(0.19,0.58)	(0.19,0.59)	(0.25,0.61)	(0.24,0.61)	
X at max height (nm)	514.2	516.2	524.8	526.2	

Table S3 The chemical stability of $Ba_{3.92}La_6O(SiO_4)_6$: 0.08Eu phosphors $Ba_{0.42}Sr_{3.5}La_6O(SiO_4)_6$: 0.08Eu phosphors.