Supplementary Information

Tris(Imidazolyl) Dicopper(I) Complex and its Reactivity to Exert Catalytic Oxidation of Sterically Hindered Phenol Substrates via a [Cu₂O]²⁺ Core

By

Chih-Yu Chen and Ming-Li Tsai*

Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan

*Corresponding author. E-mail: <u>mltsai@mail.nsysu.edu.tw</u>

Contents

Fig. S1 The (a) ¹H NMR and (b) ¹³C NMR spectra (c) IR (d) high-resolution FT-Mass of bimeta ligand and the assignments of the corresponding peaks/signals.

Fig. S2 The (a) ¹H NMR and (b) ¹³C NMR spectra of complex 1 and the assignments of the corresponding peaks/signals.

Fig. S3 (a) The cyclic voltammograms of complex 1 measured in CH₃CN with 0.1 M [ⁿBu₄N][PF₆] and a glass carbon serving as a supporting electrolyte and working electrode, respectively, at a scan rate of 100 mV. (b) the variable-scan-rate CV (5~ 300 mV) measurements of complex 1 in in CH₃CN with 0.1 M [ⁿBu₄N][PF₆]. (c) The ΔE_p vs. scan rate and i_{pa}/i_{pc} vs. scan rate plots

Fig. S4 The schematic representation of d-orbital splitting pattern of complex **1** derived from DFT calculations. Note that the energy of each d orbital pair is shown in eV.

Fig. S5 The bonding interactions between Cu ion and BIMETA in **1** analyzed by ETS-NOCV methods. The key SFOs and the associated deformation densities for (a) charge transfer from ligand 2p to Cu 4s orbitals; (b) charge transfer from ligand 2p to Cu $4p_x/4p_y$ orbitals. Note that the blue and red color shown in the deformation densities represents the increase and decrease of the electron densities, respectively.

Fig. S6 $CO_{(g)}$ and $O_{2(g)}$ binding of complex 1 in CH₃CN solution characterized by UV-vis absorption spectroscopy

Fig. S7 The UV-vis absorption spectra of PhIO-titration reactions into the CH_3CN solution of complex 1 at -40 °C. Each UV-vis absorption spectrum was measured after addition of 0.1/0.2 equiv of PhIO dissolved CH_3CN solution. The increase of a characteristic absorption band of complex 1^{ox} at 640 nm was monitored upon addition of different equiv PhIO.

Fig. S8 The IR spectra of ¹⁶O₂-generated (black) and ¹⁸O₂-generated (red) complex 1^{ox}

Fig. S9 The full-range ESI mass spectra of (a) ${}^{16}O_2$ -generated $\mathbf{1}^{ox}$; (b) ${}^{18}O_2$ -generated $\mathbf{1}^{ox}$, and the isotope distribution pattern of ${}^{18}O_2$ -generated $\mathbf{1}^{ox}$.

Fig. S10 Typical IR signature and structure of dicopper(II)-bis-µ-hydroxo in relevant papers.

Fig. S11 The isotope distribution pattern of ${}^{16}O_2$ -generated 1^{ox} measured by ESI-MS and its simulated spectrum including dicopper(II)-bis- μ -hydroxo.

Fig. S12 The ¹H NMR spectrum resulting from the stochiometric reaction between TBBP and complex 1^{ox}

Fig. S13 The ¹H NMR spectrum resulting from the stochiometric reaction between DTBP and complex 1^{ox}

Fig. S14 The proposed mechanism for the formation of TBOBF from the reaction of DTBP and complex 1^{ox}

Fig. S15 The ¹H NMR spectra of catalytic ytic oxidation of DTBP with different mol% loading of complex 1^{ox} (2 ~ 10 mol%)

Fig. S16 The ¹H NMR spectra of time-course analysis (10 min ~ 240 min) of product distributions (10 mol% loading of catalyst 1^{ox})

Scheme S1 The energy profile associated with reaction of two equivalents of $[Cu^{I}(\mu-bimeta)_{3}Cu^{I}]^{2+}$ with O₂ generating the corresponding $2[Cu^{II}(\mu-oxo)(\mu-bimeta)_{3}Cu^{II}]^{2+}$ Table S1 Selected bond distances (Å) and bond angles (°) of 1 and the corresponding DFT structure

 Table S2 Summary of crystallographic data, intensity collection and structure refinement parameters for complexes 1.

(b)

(c)

(a)

Fig. S1 The (a) ¹H NMR and (b) ¹³C NMR spectra (c) IR (d) high-resolution FT-Mass of bimeta ligand and the assignments of the corresponding peaks/signals.

(b)

Fig. S2 The (a) ¹H NMR and (b) ¹³C NMR spectra of complex **1** and the assignments of the corresponding peaks/signals.

(a)

Fig. S3 (a) The cyclic voltammograms of complex 1 measured in CH₃CN with 0.1 M [ⁿBu₄N][PF₆] and a glass carbon serving as a supporting electrolyte and working electrode, respectively, at a scan rate of 100 mV. (b) the variable-scan-rate CV (5~ 300 mV) measurements of complex 1 in in CH₃CN with 0.1 M [ⁿBu₄N][PF₆]. (c) The ΔE_p vs. scan rate and i_{pa}/i_{pc} vs. scan rate plots

Fig. S4 The schematic representation of d-orbital splitting pattern of complex 1 derived from DFT calculations. Note that the energy of each d orbital pair is shown in eV.

Fig. S5 The bonding interactions between Cu ion and BIMETA in **1** analyzed by ETS-NOCV methods. The key SFOs and the associated deformation densities for (a) charge transfer from ligand 2p to Cu 4s orbitals; (b) charge transfer from ligand 2p to Cu $4p_x/4p_y$ orbitals. Note that the blue and red color shown in the deformation densities represents the increase and decrease of the electron densities, respectively.

Fig. S6 $CO_{(g)}$ and $O_{2(g)}$ binding of complex 1 in CH₃CN solution characterized by UV-vis absorption spectroscopy

Fig. S7 The UV-vis absorption spectra of PhIO-titration reactions into the CH₃CN solution of complex **1** at -40 °C. Each UV-vis absorption spectrum was measured after addition of 0.1/0.2 equiv of PhIO dissolved CH₃CN solution. The increase of a characteristic absorption band of complex **1**°^x at 640 nm was monitored upon addition of different equiv PhIO.

Fig. S8 The IR spectra of $^{16}\text{O}_2\text{-generated}$ (black) and $^{18}\text{O}_2\text{-generated}$ (red) complex 1^{ox}

(a)

(c)

Fig. S9 The full-range ESI mass spectra of (a) ${}^{16}O_2$ -generated $\mathbf{1}^{\mathbf{0x}}$; (b) ${}^{18}O_2$ -generated $\mathbf{1}^{\mathbf{0x}}$, and the isotope distribution pattern of ${}^{18}O_2$ -generated $\mathbf{1}^{\mathbf{0x}}$.

Fig. S10 Typical IR signature and structure of dicopper(II)-bis-µ-hydroxo in relevant papers.

Fig. S11 The isotope distribution pattern of ¹⁶O₂-generated **1**^{ox} measured by ESI-MS and its simulated spectrum including dicopper(II)-bis-µ-hydroxo.

Fig. S12 The ¹H NMR spectrum resulting from the stochiometric reaction between TBBP and complex 1^{ox}.

Fig. S13 The ¹H NMR spectrum resulting from the stochiometric reaction between DTBP and complex 1^{ox}

Fig. S14 The proposed mechanism for the formation of TBOBF from the reaction of DTBP and complex 1^{ox}

Fig. S15 The ¹H NMR spectra of catalytic ytic oxidation of DTBP with different mol% loading of complex 1^{ox} (2 ~ 10 mol%)

Fig. S16 The ¹H NMR spectra of time-course analysis (10 min \sim 240 min) of product distributions (10 mol% loading of catalyst $1^{\circ x}$)

Scheme S1 The energy profile associated with reaction of two equivalents of $[Cu^{I}(\mu-bimeta)_{3}Cu^{I}]^{2+}$ with O₂ generating the corresponding $2[Cu^{II}(\mu-oxo)(\mu-bimeta)_{3}Cu^{II}]^{2+}$

	X-ray structure of	DFT structure of	DFT structure of
	complex 1	complex 1	complex 1 ^{ox}
Cu(1)–N _{Im}	1.954(5)	2.023	2.069
Cu(2)–N _{Im}	1.970(5)	2.033	2.083
Cu(1)–Cu(2)	3.0521(18)	3.453	3.051
Cu(1)–oxo	n.d.	n.d.	1.835
Cu(2)–oxo	n.d.	n.d.	1.850
$\angle Cu(1)$ -oxo-Cu(2)	n.d.	n.d.	111.8
\angle N _{Im} -Cu(1)–N _{Im}	119.57(4)	119.9	97.0/102.1/117.9
\angle N _{Im} -Cu(2)–N _{Im}	119.926(17)	119.3	97.3/99.2/126.3
Cu(1)–N3 plane	0.13	0.16	0.804
Cu(2)–N3 plane	0.05	0.07	0.725
total angle around Cu(1) center	359	360	317
total angle around Cu(2) center	360	358	323

Table S1. Selected bond distances (Å) and bond angles (°) of 1 and the corresponding DFT structure

Complex number	1		
Empirical formula	$C_{6.58}H_{10}Cu_{0.44}F_{2.67}N_{3.33}P_{0.44}$		
Formula weight	228.51		
Temperature/K	113(2)		
Crystal system	trigonal		
Space group	P-3		
a/Å	22.8908(4)		
b/Å	22.8908(4)		
c/Å	13.8848(3)		
α/\circ	90		
β/°	90		
$\gamma/^{\circ}$	120		
Volume/Å ³	6300.7(3)		
Z	27		
$\rho_{calc}g/cm^3$	1.626		
µ/mm ⁻¹	1.187		
F(000)	3142.0		
Crystal size/mm ³	0.2 imes 0.2 imes 0.2		
Radiation	Mo Ka ($\lambda = 0.71073$)		
2@ range for data collection/° 3.582 to 54.088			
Index ranges	$-29 \le h \le 28, -18 \le k \le 27, -17 \le l \le 16$		
Reflections collected	41314		
Independent reflections	8745 [$R_{int} = 0.0313$, $R_{sigma} = 0.0411$]		
Data/restraints/parameters	8745/939/646		
Goodness-of-fit on F ²	1.026		
Final R indexes $[I \ge 2\sigma (I)]^{a,b}$ R ₁ = 0.0874, wR ₂ = 0.2170			
Final R indexes [all data]	$R_1 = 0.1380, wR_2 = 0.2470$		
Largest diff. peak/hole / e Å ⁻³ 0.88/-0.86			
^a R1 = $(\Sigma F_o - F_c)/(\Sigma F_o)$. ^b wR2 = $[\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{1/2}$			

 Table S2. Summary of crystallographic data, intensity collection and structure refinement

 parameters for complexes 1

The coordinates of DFT optimized structure (complex 1)

Cu	-0.00298	-0.00035	-1 69688
Cu	-0.00582	0.00108	1 75626
N	0.92980	-1 79591	-1 75847
N	1 27662	-3 95192	-2 12096
N	-0 64437	-5 68067	-0.61221
N	-0 65249	-4 12932	2 03941
N	-0.65868	-1 91841	1 91708
N	2 02286	0.00804	1.76350
N	-4.05874	0.88621	-2 12954
N	4 50288	3 40018	0.61030
N	-4.39288	2 62500	-0.01039
IN N	-3.23609	2.02399	2.04433
IN N	-1.54152 1.00241	1.32437	1.92403
IN N	2 70202	2.06008	-1.70893
IN N	2.79293	3.00908	-2.14030
IN N	3.24320	2.2033/	-0.62477
IN N	3.89/88	1.49940	2.02905
N	1.98329	0.39301	1.91383
C	0.40775	-2.92061	-2.22462
C	2.20052	-2.12222	-1.32390
C	2.42757	-3.45599	-1.53869
C	0.99548	-5.35376	-2.43912
С	0.59484	-6.17603	-1.20708
С	-0.96769	-6.23744	0.70302
С	-0.23683	-5.52049	1.84886
С	-1.77780	-3.69613	2.71463
С	-1.76754	-2.33056	2.63213
С	-0.01628	-3.02739	1.57654
С	-2.72984	1.11723	-2.22862
С	-2.94642	-0.83644	-1.33468
С	-4.21218	-0.35967	-1.55172
С	-5.12700	1.83643	-2.44787
С	-5.64151	2.59024	-1.21432
С	-4.91822	3.96189	0.70612
С	-4.66986	2.96454	1.84840
С	-2.32394	3.37747	2.73110
С	-1.14680	2.68508	2.64998
С	-2.62118	1.52694	1.57667
С	2.32859	1.80226	-2.23418
С	0.74479	2.97026	-1.34543
С	1.79059	3.82723	-1.56569
Ċ	4.15020	3.51737	-2.45992
Č	5.06175	3.58380	-1.22735
Č	5 88559	2 26884	0.69223
C	4 89707	2 55216	1 83402
C	4 08385	0.30981	2 70727
C	2 89429	-0.36139	2.70727
c	2.67429	1 50130	1 5680/
с н	-1 12165	-5 8/857	-1 2/001
н Ц	-1.42103	-3.0403/	-1.24901
н П	-0.20100	-3.02/90	-2.04400 0.80102
п u	2.03014	-1.3004/	-0.09190
н П	J.27122	-4.0/9/9	-1.30207
п	0.19//0	-3.30343	-3.10034

Н	1.88532	-5.78615	-2.90558
Н	1.39436	-6.10599	-0.46075
Η	0.53839	-7.23569	-1.50933
Η	-2.04709	-6.13900	0.85599
Η	-0.72973	-7.31184	0.78077
Η	0.84407	-5.51647	1.68344
Η	-0.41524	-6.05618	2.78611
Η	-2.45261	-4.38505	3.20024
Η	-2.46399	-1.62037	3.05259
Η	0.89659	-3.07299	1.00002
Η	-4.34444	4.16880	-1.24216
Н	-2.32247	2.02726	-2.64415
Н	-2.63767	-1.77818	-0.90525
Η	-5.18671	-0.79193	-1.37953
Н	-4.73202	2.53525	-3.19181
Η	-5.94642	1.28763	-2.92085
Η	-5.98640	1.86022	-0.47323
Н	-6.52764	3.17353	-1.51757
Н	-4.29242	4.84559	0.86625
Η	-5.96739	4.29458	0.78060
Н	-5.20729	2.02800	1.67576
Η	-5.04865	3.38288	2.78579
Η	-2.58485	4.30284	3.22244
Η	-0.18564	2.92882	3.07771
Н	-3.11480	0.76462	0.99099
Н	5.77896	1.67076	-1.25681
Н	2.91323	0.99273	-2.64600
Н	-0.22547	3.17558	-0.91756
Η	1.90353	4.88801	-1.39772
Η	4.55613	2.82589	-3.20482
Η	4.08540	4.50183	-2.93213
Η	4.60386	4.24763	-0.48523
Η	6.01039	4.05828	-1.53124
Η	6.33712	1.28451	0.85163
Η	6.69890	3.01029	0.76818
Η	4.35495	3.48595	1.66125
Η	5.44826	2.67066	2.77179
Η	5.01824	0.06894	3.19174
Η	2.62598	-1.31772	3.05301
Н	2.20818	2.31424	0.99120

The	coordinates	of DFT op	timized structure (complex 1 ^{ox})	
Cu	0.14112	0.80015	1.20104	
Cu	-0.04766	-0.61338	-1.74015	
NT	0 27146	0 69200	2 (1002	

Cu	0.14112	0.80015	1.20104
Cu	-0.04766	-0.61338	-1.74015
Ν	-0.27146	-0.68309	2.61003
Ν	-0.36695	-2.61194	3.68894
Ν	0.29595	-5.14145	1.92928
Ν	-0.54912	-4.68617	-0.96443
Ν	-0.09867	-2.68401	-1.78253
Ν	1.91433	1.57245	1.81461
Ν	3.73718	2.81163	1.69881
Ν	4.88998	2.82400	-1.14419
Ν	4.03750	0.11129	-2.43209
Ν	1.88049	-0.35154	-2.38381
Ν	-1.41368	2.26099	1.84966
Ν	-3.31441	3.38586	1.68314
Ν	-5.19080	2.22692	-0.57498
Ν	-3.67712	0.99537	-2.98257
Ν	-1.92810	-0.25275	-2.49157
С	0.18060	-1.92957	2.65193
Ċ	-1.14837	-0.55390	3.66785
Ċ	-1.21558	-1.73891	4.34580
Ċ	-0.09169	-3.99555	4.09694
Č	-0.56842	-5.06578	3.10989
Č	-0.07298	-6.19073	0.97413
C	-1.08861	-5 72055	-0.07867
C	0 40984	-4 86004	-1 94492
C	0.68059	-3 61373	-2 43991
C	-0.82118	-3 36535	-0.90302
C	2 57388	2 47297	1 09780
C	2.57500	1 32002	2 93019
C	3 82159	2 08086	2.95019
C	4 75758	3 71921	1 16515
C	5 63871	3 07405	0.08857
C	5 61823	2 0/120	-2 14733
C	5 37560	0 53031	-2.14733
C	3 67274	-0.22890	-2.00128
C	2 2 2 2 5 8 1	-0.22890	-3.72122
C	2.33381	-0.31389	-5.07758
C	2.92550	2 20182	-1.00500
C	-2.01099	2.29182	2 65202
C	-1.55959	3.37920 4.08576	2.05203
C	-2.30804	4.08570	2.30309
C	-4./00/1	2 62008	1.34/14
C	-5.05/94	2.02098	-0.15/20
C	-3.09409	2.00893	-1.94239
C	-4.38901	2.14115	-5.00820
C	-3.89402	-0.24402	-3.33983
C	-2.80100	-1.00383	-3.24949
	-2.48003	0.94207	-2.34993
H	1.23646	-5.29813	2.23217
H	0.8/54/	-2.38014	1.95912
H	-1.65/13	0.3/759	3.86204
H	-1.76852	-2.03775	5.22353
H	0.98423	-4.09960	4.28058
Н	-0.59369	-4.14134	5.05589

Н	-1.59234	-4.83484	2.79322
Н	-0.60995	-6.02456	3.65561
Н	0.83600	-6.52051	0.46102
Н	-0.49737	-7.07870	1.47162
Н	-1.98514	-5.30860	0.39256
Н	-1.40278	-6.57066	-0.69217
Н	0.79026	-5.83589	-2.20674
Η	1.37216	-3.32576	-3.21717
Η	-1.53905	-2.94117	-0.21573
Η	4.59861	3.71124	-1.55152
Η	2.24837	2.88285	0.15403
Η	2.36585	0.62805	3.69430
Η	4.65814	2.18272	3.54558
Η	4.25246	4.60659	0.76948
Η	5.37519	4.04631	2.00515
Η	6.02065	2.11890	0.46780
Η	6.51377	3.72676	-0.07109
Η	5.29009	2.35620	-3.14284
Η	6.70569	2.21418	-2.10041
Η	5.50523	0.21424	-0.96242
Η	6.10038	-0.02402	-2.60431
Η	4.38598	-0.24349	-4.53159
Η	1.67846	-0.81297	-4.48093
Η	2.91191	0.25972	-0.61123
Η	-5.81584	1.73625	0.06356
Η	-3.00689	1.57315	0.58622
Η	-0.45607	3.60370	3.23216
Η	-2.83884	5.00139	3.03098
Η	-5.38203	3.11872	1.94774
Η	-4.84446	4.77153	1.66261
Η	-4.28231	4.11535	-0.73403
Η	-5.99225	4.18888	-0.29130
Η	-6.18775	1.09441	-2.01402
Η	-6.44910	2.83235	-2.19745
Η	-3.98451	3.04380	-2.88802
Η	-5.04340	2.18513	-4.00265
Η	-4.77965	-0.45644	-4.14066
Η	-2.57972	-2.02532	-3.52749
Η	-2.04163	1.75755	-1.79965
0	-0.20492	0.83826	-0.58678