Electronic supplementary information

Growth, Structure, Optical and Electronic Transport Properties of Tetragonal CH₃NH₃SnBr₃ Perovskite **Single Crystal**

Yu Wu, ^a Huawei Zhou,^{a,*} Jie Yin,^{a,*} and Xianxi Zhang^{a,*}

^aSchool of Chemistry and Chemical Engineering; College of Materials Science and Engineering; Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage; Liaocheng University

*E-mail: zhouhuaweiopv@163.com; xxzhang3@126.com

Uij tensor.					
Atom	X	У	Z	U(eq)	
Sn(1)	5000	5000	5000	25(1)	
Sn(2)	5000	5000	0	37(1)	
Br(1)	5000	5000	2493(1)	101(1)	
Br(3)	5000	0	0	101(1)	
Br(2)	5000	0	5000	99(1)	
C(1)	0	0	2790(1)	151(1)	
N(1)	0	770(5)	1599(1)	314(1)	

Table S1. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters ($A^2 \times 10^3$) for MASnBr₃. U(eq) is defined as one third of the trace of the orthogonalized

	Table S2.	Bond lengths [A] and angles [deg] for MASnBr ₃ .
--	-----------	---

Bond	Bond lengths [A] and angles [deg]	
Sn(1)-Br(2)#1	2.9347(4)	
Sn(1)-Br(2)#2	2.9346(4)	

Sn(1)-Br(2)	2.9346(4)
Sn(1)-Br(2)#3	2.9346(4)
Sn(1)-Br(1)	2.9389(5)
Sn(1)-Br(1)#4	2.9389(5)
Sn(2)-Br(1)#5	2.9225(5)
Sn(2)-Br(1)	2.9225(5)
Sn(2)-Br(3)#1	2.9346(4)
Sn(2)-Br(3)	2.9346(4)
Sn(2)-Br(3)#3	2.9346(4)
Sn(2)-Br(3)#2	2.9346(4)
Br(3)-Sn(2)#6	2.9346(4)
Br(2)-Sn(1)#6	2.9346(4)
C(1)-N(1)	1.4679(17)
C(1)-H(1A)	0.9602
C(1)-H(1B)	0.9602
C(1)-H(1C)	0.9602
N(1)-H(1D)	0.8900
N(1)-H(1E)	0.8900
N(1)-H(1F)	0.8900
Br(2)#1-Sn(1)-Br(2)#2	180.0
Br(2)#1-Sn(1)-Br(2)	90.0
Br(2)#2-Sn(1)-Br(2)	90.0
Br(2)#1-Sn(1)-Br(2)#3	90.0
Br(2)#2-Sn(1)-Br(2)#3	90.0
Br(2)-Sn(1)-Br(2)#3	180.0
Br(2)#1-Sn(1)-Br(1)	90.0
Br(2)#2-Sn(1)-Br(1)	90.0
Br(2)-Sn(1)-Br(1)	90.0
Br(2)#3-Sn(1)-Br(1)	90.0
Br(2)#1-Sn(1)-Br(1)#4	90.0
Br(2)#2-Sn(1)-Br(1)#4	90.0
Br(2)-Sn(1)-Br(1)#4	90.0
Br(2)#3-Sn(1)-Br(1)#4	90.0
Br(1)-Sn(1)-Br(1)#4	180.0
Br(1)#5-Sn(2)-Br(1)	180.0
Br(1)#5-Sn(2)-Br(3)#1	90.0
Br(1)-Sn(2)-Br(3)#1	90.0
Br(1)#5-Sn(2)-Br(3)	90.0
Br(1)-Sn(2)-Br(3)	90.0
Br(3)#1-Sn(2)-Br(3)	90.0
Br(1)#5-Sn(2)-Br(3)#3	90.0
Br(1)-Sn(2)-Br(3)#3	90.0
Br(3)#1-Sn(2)-Br(3)#3	90.0

Br(3)-Sn(2)-Br(3)#3	180.0
Br(1)#5-Sn(2)-Br(3)#2	90.0
Br(1)-Sn(2)-Br(3)#2	90.0
Br(3)#1-Sn(2)-Br(3)#2	180.0
Br(3)-Sn(2)-Br(3)#2	90.0
Br(3)#3-Sn(2)-Br(3)#2	90.0
Sn(2)-Br(1)-Sn(1)	180.0
Sn(2)#6-Br(3)-Sn(2)	180.0
Sn(1)#6-Br(2)-Sn(1)	180.0
N(1)-C(1)-H(1A)	109.5
N(1)-C(1)-H(1B)	109.5
H(1A)-C(1)-H(1B)	109.5
N(1)-C(1)-H(1C)	109.5
H(1A)-C(1)-H(1C)	109.5
H(1B)-C(1)-H(1C)	109.5
C(1)-N(1)-H(1D)	109.5
C(1)-N(1)-H(1E)	109.5
H(1D)-N(1)-H(1E)	109.5
C(1)-N(1)-H(1F)	109.5
H(1D)-N(1)-H(1F)	109.5
H(1E)-N(1)-H(1F)	109.5

Symmetry transformations used to generate equivalent atoms:

#1 -y+1,x,z #2 -y,x,z #3 x,y+1,z #4 -x+1,-y+1,-z+1 #5 -x+1,-y+1,-z #6 x,y-1,z

Table S3.Anisotropic displacement parameters (A² x 10³) for MASnBr₃.The anisotropic displacement factor exponent takes the form:

 $-2 pi^{2} [h^{2} a^{*2} U11 + + 2 h k a^{*} b^{*} U12]$							
	U11	U22	U33	U2	3 U13	U12	
Sn(1)	22(1)	22(1)	31(1)	0	0	0	
Sn(2)	40(1)	40(1)	32(1)	0	0	0	
Br(1)	123(1)	123(1)	57(1)	0	0	0	
Br(3)	127(1)	53(1)	123(1)	0	0	0	
Br(2)	118(1)	49(1)	128(1)	0	0	0	
C(1)	151(1)	151(1)	149(1)	0	0	0	
 N(1)	313(1)	314(1)	315(1)	-1(1)	0	0	

	displacement parameters ($A^2 \times 10^3$) for MASnBr ₃ .				
	x	у	Z	U(eq)	
H(1	A) 432	1240	3278	226	
H(1	B) 1066	-1228	2878	226	
H(1	C) -1498	-516	2994	226	
H(1	D) 380	-385	1146	471	
H(1	E) 1004	1894	1515	471	
H(1	F) -1383	1269	1414	471	

Table S4. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters ($A^2 x \ 10^3$) for MASnBr

Table S5. Torsion angles [deg] for MASnBr₃.

Bond	Bond lengths [A] and angles [deg]
Br(1)#5-Sn(2)-Br(1)-Sn(1)	0(19)
Br(3)#1-Sn(2)-Br(1)-Sn(1)	136(5)
Br(3)-Sn(2)-Br(1)-Sn(1)	-134(5)
Br(3)#3-Sn(2)-Br(1)-Sn(1)	46(5)
Br(3)#2-Sn(2)-Br(1)-Sn(1)	-44(5)
Br(2)#1-Sn(1)-Br(1)-Sn(2)	-136(36)
Br(2)#2-Sn(1)-Br(1)-Sn(2)	44(10)
Br(2)-Sn(1)-Br(1)-Sn(2)	134(10)
Br(2)#3-Sn(1)-Br(1)-Sn(2)	-46(10)
Br(1)#4-Sn(1)-Br(1)-Sn(2)	0(22)
Br(1)#5-Sn(2)-Br(3)-Sn(2)#6	0.0
Br(1)-Sn(2)-Br(3)-Sn(2)#6	0.0
Br(3)#1-Sn(2)-Br(3)-Sn(2)#6	0.0
Br(3)#3-Sn(2)-Br(3)-Sn(2)#6	0.0
Br(3)#2-Sn(2)-Br(3)-Sn(2)#6	0.0
Br(2)#1-Sn(1)-Br(2)-Sn(1)#6	180.0
Br(2)#2-Sn(1)-Br(2)-Sn(1)#6	0.0
Br(2)#3-Sn(1)-Br(2)-Sn(1)#6	0.0
Br(1)-Sn(1)-Br(2)-Sn(1)#6	-90.0
Br(1)#4-Sn(1)-Br(2)-Sn(1)#6	90.0

Symmetry transformations used to generate equivalent atoms:

#1 -y+1,x,z #2 -y,x,z #3 x,y+1,z

#4 -x+1,-y+1,-z+1 #5 -x+1,-y+1,-z #6 x,y-1,z