<Supporting Information>

Organic–Inorganic One-Dimensional Hybrid Aggregates

Constructed from Aromatic-bisphosphonate-Functionalized

Polyoxomolybdates

Hui Kong, Siyu Liu, Yanan Shi, Keli Li, Pengtao Ma, Jingping Wang* and Jingyang Niu*

Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecule and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.

Contains

Section 1: Physical measurements. Section 2: The infrared spectrum of compounds **1–5**. Section 3: The Raman spectra of compounds **1–5**. Section 4: The TGA curves of compounds **1–5**. Section 5: The PXRD of compounds **1–5**. Section 6: Additional crystal structural pictures of compound **1**. Section 7: SEM-EDX of compounds **1–5**. Section 8: Decay time of ligand and CIE chromaticity diagrams of compound **1**. Section 9: χ_M vs T curve of compounds **1–5**. Section 10: χ_M ⁻¹ vs T curve of compounds **1–5**. Table S1: Some assigned characteristic peaks of IR spectrum of compounds **1–5**.

Table S2: Some assigned characteristic peaks of Raman spectra of compounds **1–5**. Table S3: Decay time of compound **1** and ligand, and CIE chromaticity coordinate of compound **1**.

Table S4: Crystallographic data of five compounds.

Table S5: BVS values of Mo, P, and Tb atoms of compound 1.

Table S6: BVS values of Ho, Er, Tm, and Yb atoms of compounds 2-5.

Table S7: Bond length of compound **1**.

Table S8: Angel length of compound **1**.

Physical measurements

IR spectra of all samples were recorded on a Bruker VERTEX 70 IR spectrometer using KBr pellets for solid sample palletized in the range 4000–400 cm⁻¹. Raman spectra were performed on a Renishaw inVia with a red Spectra-Physics He–Ne laser (wavelength of 633 nm and 500 mW capacity). Thermogravimetric analyses (TGA) were measured by using a Mettler–Toledo TGA/SDTA 851° instrument in flowing N₂ with a heating rate of 10 °C min⁻¹. Powder X-ray diffraction (PXRD) data were obtained on a Bruker D8 Advance instrument with Cu Ka radiation (λ = 1.5418 Å) in the angular range 2 λ = 5–5° at 293 K. C, H, and N elemental analyses were gain with an Elementar Vario EL cube CHNS analyzer. Photoluminescence properties were investigated on an EDINBURGH FLS 980 fluorescence spectrophotometer. Magnetic measurements were performed on a Quantum Design SQUID magnetometer.

IR Spectrum

As shown in Fig. S1, the IR spectrum showed the skeletal vibrations between 500 and 4000 cm⁻¹ for five compounds, which is consistent with the result of single-crystal X-ray structural analysis. It also indicated that polyanions in **1–5** were isostructural. The five compounds have obvious characteristic absorption peaks at 600–1050 cm⁻¹, which is the vibration of Mo–O and Mo–O–Mo in subunit { Mo_5O_{15} }. The absorption peaks of compounds **1–5** at 1050–1240 cm⁻¹ can be assigned to P–O vibrations. Strong superimposed peaks at about 1400–1600 cm⁻¹ are assigned to the stretching vibration of the aromatic ring and NH₄⁺ ions. In addition, the signal appearing at 1610–3500 cm⁻¹ are belonged to the flexural vibration and stretching of lattice and coordinated water molecules. Some assigned characteristic peaks of the samples are listed in Table S1.

Fig.S1. (a) The IR of compounds 1-5 and ligand; (b) The IR of ligand between 2000–1000 cm⁻¹.

Compounds	ν(Mo–O)	v(Mo–O–Mo)	ν(P–O)	ν(O–H)	δ(О–Н)
Ligand			1227(s), 1121(s)		
1	1033(s), 982(s)	913(s), 686(s)	1194(m), 1105(s)	3425(s)	1628(s)
2	1034(s), 983(s)	908(s), 685(s)	1200(m), 1102(s)	3427(s)	1625(s)
3	1033(s), 979(s)	910(s), 687(s)	1195(m), 1101(s)	3425(s)	1621(s)
4	1031(s), 982(s)	912(s), 684(s)	1195(m), 1101(s)	3420(s)	1624(s)
5	1033(s), 980(s)	910(s), 685(s)	1192(m), 1106(s)	3421(s)	1620(s)

Table S1 Some assigned characteristic peaks of compounds 1-5.

Raman spectra

The Raman spectra in the solid state were carried out as a supplement to the IR test results. As shown in Fig. S2, the obvious characteristic Raman bands at 550–1000 cm⁻¹ are attributable to v(Mo–O) and v(O–Mo–O) vibrations of the POM skeleton, respectively. The peaks from 1000–1300 cm⁻¹ are mainly associated with the v(P-O) vibrations. The signals of 1400–1410 cm⁻¹ were assigned to the v(C-H) vibrations of the aromatic ring. Some assigned characteristic peaks of compounds **1–5** are listed in Table S2. IR and Raman spectra are consistent with the results of structural analysis.

Table S2 Some assigned characteristic Raman peaks of compounds 1-5.

compounds	ν (Mo –O)	ν (Μο–Ο–Μο)	ν(Ρ–Ο)
1	986, 936	886, 765	1187, 1248
2	986, 940	880, 764	1187, 1245
3	988, 938	882, 767	1188, 1250
4	989, 936	884, 765	1185, 1245
5	988, 940	883, 761	1186, 1249

Thermogravimetric Analysis (TGA)

Under the protection of N_2 , TGA curves of compounds **1–5** have been measured in the range of 25–1000 °C. As shown in Fig. S3, five compounds showed two consecutive weight loss changes. The first step is that the actual weight loss of **1**, is about 26.5 %, **2** is about 24.2 %, **3** is about 27.8 %, **4** is about 26.6 %, and **5** is about 28.7 % in the temperature range of 25–850 °C, which correspond to the loss of crystal water, coordination water, structural water, and the decomposition of the ammonium counter-cation and partial organic phosphonic acid fragments in **1–5**, respectively. In the second step, the mass loss is between 850–1000 °C, the actual weight loss of **1** is about 14.2 %, **2** is about 15.5 %, **3** is about 14.7 %, **4** is about 14.1 %, and **5** is about 13.8 %, which correspond to the loss of the remianing of organic phosphonic acid fragments, and the decomposition of the ammonium counter, and the decomposition of the remianing of organic phosphonic acid fragments, and the decomposition of the remianing of organic phosphonic acid fragments, and the decomposition of the remianing of organic phosphonic acid fragments, and the decomposition of the POMs skeleton.

Fig. S3. The TGA curve s of compounds 1–5.

PXRD

As shown in Fig. S4, the experimental PXRD patterns for five POMs are consistent with the simulated patterns obtained from X-ray single-crystal diffraction, which indicate that the samples are pure. The differences of peak intensity between the experimental and simulated patterns might be due to the anisotropic effects of crystal.

Fig.S4. The PXRD of compounds 1–5.

Additional crystal structural pictures.

Fig. S5. Connection mode of between two Tb atoms in 1b unit.

Fig. S6. (a) The polyhedral representation of the $\{Mo_5O_{15}\}$ unit; (b) The ball-and-stick representation of the $\{Mo_5O_{15}\}$ unit.

Fig. S7. (a) The ball-and-stick representation of $\{Mo_{10}O_{30}(1,4-O_3PCH_2C_6H_4CH_2PO_3)\}$ fragment; (a) The ball-and-stick representation of $\{1,4-O_3PCH_2C_6H_4CH_2PO_3\}$ fragment; (c) The ball-and-stick representation of $\{CH_2C_6H_4CH_2\}$ fragment.

Fig. S8. (a) The coordination mode of Mo1⁶⁺; (b) Connection mode of between two $H_2O_3PCH_2C_6H_4CH_2PO_3H_2$ ligands and $\{Mo_5O_{15}\}$ unit.

Fig. S9. (a) A view along the *b* axis of **1**; (b) A simplified view along the *b* axis of the **1**.

Fig. S10. (a) 1-D chain along the *c* axis of **1**; (b) A simplified view along the *c* axis of the 1-D chain of **1**.

Fig. S11 (a-e) The thermal ellipsoidal diagram of the asymmetric unit in the crystal structure of compounds **1-5**.

Fig. S12 (a-e) Representative ortep diagram of the asymmetric unit in the crystal structure of compounds **1-5**. All the hydrogen atoms are omitted for clarity.

SEM-EDX study

Scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) are presented for compounds **1–5**. The results show that the morphologies of **1–5** are shaped block, and these elements (O, P, Na, Mo, Ln) are present and distributed in the compounds **1–5** (Fig. S13-S17). The EDX elemental spectra for **1–5**, shown in Fig. S18, suggest the number ratio of Na, Mo, P, and Ln is about 1.05 : 7.28 : 3.02 : 0.66. Combined with the ratio of Mo, P, and Ln atoms determined in the anionic structural formula is 10 : 4 : 1, and the number is 20, 8, and 2, respectively, the number of Na is 2.88, which is about 3.

Ho La1

Fig. S14 SEM-EDX element maps of 2.

Fig. S15 SEM-EDX element maps of 3.

Fig. S16 SEM-EDX element maps of 4.

Fig. S17 SEM-EDX element maps of 5.

Fig. S18. EDX elemental spectra of **1–5** showing the presence of Na, C, N, O, P, Mo, and Ln element in the lattice.

Fig. S19 the emission spectrum of free ligand under excitation at 268 nm.

Fig. S20. (a) Decay time of ligand; (b) CIE chromaticity diagrams of compound 1.

Table S3.	Decay time c	of and compour	nd 1 and ligan	d, and CIE chro	maticity coordinate
of compou	und 1 .				

Compound	Decay	- (7, 3)				
Compound -	$ au_1$	τ_2	- (x	(x, y)		
1	588.69 (100%)	-	0.23	0.36		
Ligand	1.36 (54.06%)	11.35 (43.94%)	-	-		

Fig. S21. χ_M vs T curve of compounds **1–5**.

Fig. 22. χ_M^{-1} vs T curve of compounds **1–5**.

Compound	1	2	3	4	5
	$N_5C_{32}H_{148}Mo_{20}Na_3O_{15}$	$N_5C_{32}H_{126}Ho_2Mo_{20}Na_3$	$N_5C_{32}H_{164}Er_2Mo_{20}Na_3$	$N_5C_{32}H_{142}Mo_{20}Na_3O_{149}\\$	$N_5C_{32}H_{176}Mo_{20}Na_3O_{16}\\$
Empirical formula	$_2P_8Tb_2$	$O_{141}P_8$	$O_{160}P_8$	P_8Tm_2	$_6P_8Yb_2$
Formula weight	5588.87	5402.71	5749.65	5554.84	5869.31
Temperature/K	150	150	150	150	296
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic
Space group	C2/c	C2/c	C2/c	C2/c	C2/c
a/Å	36.2646(11)	36.542(3)	36.542(3)	36.3225(11)	36.803(6)
b/Å	11.0382(3)	11.0120(7)	11.0085(3)	10.9837(3)	11.0192(14)
c/Å	37.7938(10)	37.666(3)	36.3183(10)	37.6737(11)	37.831(5)
β/°	97.7710(10)	97.630(3)	98.0830(10)	97.8310(10)	97.728(5)
Volume/Å ³	14989.8(7)	15247(3)	14939.4(8)	14890.0(7)	15203(4)
Z	4	4	4	4	4
ρ calcg/cm ³	2.197	2.057	2.134	2.142	2.086
μ/mm^{-1}	2.742	2.794	2.919	2.993	2.993
2θ range/°	4.506-50.2	4.498-50.198	4.36-50.2	4.366-50.198	4.356-50.2
	$-43 \le h \le 43$	$-44 \le h \le 41$	$-43 \le h \le 41$	$-43 \le h \le 43$	$-43 \le h \le 43$
Index ranges	$-13 \le k \le 12$	$-11 \le k \le 13$	$-11 \le k \le 13$	-13 ≤ k ≤ 13	$-13 \le k \le 12$
	$-42 \le l \le 45$	$-45 \le l \le 44$	-24 ≤ l ≤ 45	$-44 \le l \le 44$	$-45 \le l \le 45$
F(000)	9500.0	8972.0	9140.0	9148.0	9076.0
Reflections collected	53945	41348	37439	70129	62863
$GoF(F^2)$	1.009	1.020	1.010	1.015	1.038
$R_1, wR_2 [I \ge 2\sigma (I)]$	0.0430, 0.0931	0.0441, 0.1125	0.0436, 0.1004	0.0536, 0.1031	0.0314, 0.0863
R_1 , wR_2 [all data]	0.0593, 0.1023	0.0538, 0.1183	0.0548, 0.1069	0.0948, 0.1222	0.0364, 0.0898
Largest diff. peak/hole	217/175	1 (0 / 1 70	1.00 / 1.42	1 (1 / 1 /0	175/107
/ e Å-3	2.1//-1./0	1.00/-1.70	1.00/-1.43	1.01/-1.40	1./3/-1.0/

Table S5. BVS values of Mo, P and Tb atoms of compound 1.

Atom	BVS	Atom	BVS	Atom	BVS
Mo1	6.13	Mo6	6.09	P1	5.01
Mo2	6.14	Mo7	6.15	P2	4.94
Mo3	6.12	Mo8	6.18	P3	5.08
Mo4	6.04	Mo9	6.07	P4	5.01
Mo5	6.14	Mo10	6.06	Tb1	3.31

Table S6. Bond length and BVS values of Ho, Er, Tm and Yb atoms in compounds 2-5.

Bond	Bond length	Bond	Bond length	Bond	Bond length	Bond	Bond length
Ho1-0181	2.343(6)	Er1-0181	2.375(15)	Tm1-018 ¹	2.334(8)	Yb1-0181	2.303(4)
Ho1-O30	2.337(6)	Er1-030	2.302(16)	Tm1-030	2.321(9)	Yb1-030	2.311(5)
Ho1-O1W	2.353(6)	Er1-01W	2.341(14)	Tm1-01W	2.330(9)	Yb1-O1W	2.328(5)
Ho1–O4W	2.327(6)	Er1-04W	2.316(14)	Tm1-04W	2.295(9)	Yb1-O4W	2.292(5)

Ho1–O2W	2.361(7)	Er1-O2W	2.349(17)	Tm1-02W	2.355(10)	Yb1-O2W	2.308(6)
Ho1–O3W	2.401(7)	Er1-03W	2.381(17)	Tm1-03W	2.407(9)	Yb1-O3W	2.372(6)
Ho1-05W	2.387(8)	Er1-05W	2.391(19)	Tm1-05W	2.363(10)	Yb1-O5W	2.346(6)
Ho1–O6W	2.323(9)	Er1-06W	2.320(18)	Tm1-06W	2.322(11)	Yb1-O6W	2.300(7)
BVS(Ho	o1) = 3.31	BVS(Er1) = 3.26	BVS(Trr	1) = 3.22	BVS(Yt	o1) = 3.29

Table S7. Bond length of compound Co1.

Bond	Bond length	Bond	Bond length	Bond	Bond length
Mo1-01	2.379(6)	Mo2-O2	1.911(6)	Mo3-O3	2.173(6)
Mo1-052	2.314(6)	Mo2-07	2.272(6)	Mo3-07	2.349(6)
Mo1-09	1.907(6)	Mo2-010	1.715(6)	Mo3-017	1.902(6)
Mo1-014	1.710(7)	Mo2-017	1.919(6)	Mo3-018	1.737(6)
Mo1-021	1.918(6)	Mo2-022	2.320(6)	Mo3-O23	1.934(6)
Mo1-025	1.692(7)	Mo2-028	1.703(6)	Mo3-034	1.709(6)
Mo4-01	2.222(6)	Mo5-O3	2.416(6)	Mo6-013	2.243(6)
Mo4-09	1.920(6)	Mo5-08	2.258(6)	Mo6-019 ²	2.359(6)
Mo4-011 ²	2.358(6)	Mo5-012	1.886(7)	Mo6-021	1.905(7)
Mo4-016	1.955(6)	Mo5-O23	1.946(6)	Mo6-O26	1.942(7)
Mo4-024	1.715(7)	Mo5-027	1.710(7)	Mo6-031	1.704(7)
Mo4-029	1.709(6)	Mo5-O33	1.697(7)	Mo6-035	1.711(7)
Mo7-02	1.944(6)	Mo8-O6	2.312(7)	Mo9-04	2.309(7)
Mo7-015	2.170(6)	Mo8-011 ²	2.309(6)	Mo9-012	1.907(7)
Mo7-020	1.909(7)	Mo8-016	1.921(6)	Mo9-015	2.418(6)
Mo7-022	2.392(6)	Mo8-032	1.911(6)	Mo9-O20	1.919(6)
Mo7-030	1.728(7)	Mo8-O36	1.697(7)	Mo9-037	1.719(7)
Mo7-040	1.695(7)	Mo8-042	1.708(7)	Mo9-038	1.701(7)
Mo10-06	2.418(6)	P1-07	1.539(6)	P2-01	1.540(7)
Mo10-019 ²	2.190(6)	P1-08	1.512(6)	P2-06	1.544(6)
Mo10-026	1.962(7)	P1-015	1.552(7)	P2-013	1.513(7)
Mo10-032	1.903(8)	P1-C9	1.787(9)	P2-C16	1.801(9)
Mo10-039	1.720(8)	P3-05	1.507(7)	P3-019	1.548(7)
Mo10-041	1.696(7)	P3-011	1.535(6)	P3-C1	1.781(10)
P4-03	1.556(7)	Tb1-0181	2.371(6)	Tb1-O2W	2.385(7)
P4-04	1.512(6)	Tb1-O30	2.360(7)	Tb1-O3W	2.446(7)
P4-022	1.546(6)	Tb1-O1W	2.376(6)	Tb1-O5W	2.400(7)
P4-C8	1.773(9)	Tb1-O4W	2.336(7)	Tb1-O6W	2.368(9)

Table S8. Angel length of compound 1.

Bond	Angel	Bond	Angel	Bond	Angel
052-Mo1-01	87.5(2)	02-Mo2-07	80.8(2)	03-Mo3-07	73.7(2)
09-Mo1-01	69.8(2)	02-Mo2-017	146.6(2)	017-Mo3-O3	83.6(2)
09-Mo1-052	77.4(2)	02-Mo2-022	73.9(2)	017-Mo3-07	71.7(2)

09-Mo1-021	143.6(3)	07-Mo2-022	80.7(2)	017-Mo3-023	152.4(3)
014-Mo1-01	86.6(3)	010-Mo2-O2	99.0(3)	018-Mo3-O3	156.5(3)
014-Mo1-052	174.1(3)	010-Mo2-07	89.3(3)	018-Mo3-07	86.2(3)
014-Mo1-09	100.8(3)	010-Mo2-017	101.2(3)	018-Mo3-017	101.8(3)
014-Mo1-021	99.8(3)	010-Mo2-022	168.5(3)	018-Mo3-O23	93.8(3)
021-Mo1-01	81.9(2)	017-Mo2-07	73.2(2)	O23-Mo3-O3	73.5(2)
O21-Mo1-O52	79.0(3)	017-Mo2-022	81.4(2)	023-Mo3-07	86.9(2)
025-Mo1-01	168.5(3)	028-Mo2-O2	100.3(3)	O34-Mo3-O3	96.8(3)
O25-Mo1-O52	83.3(3)	028-Mo2-07	166.4(3)	O34-Mo3-O7	166.2(3)
O25-Mo1-O9	101.4(3)	O28-Mo2-O10	103.9(3)	O34-Mo3-O17	97.8(3)
O25-Mo1-O14	102.6(3)	O28-Mo2-O17	100.3(3)	O34-Mo3-O18	105.0(3)
O25-Mo1-O21	102.9(3)	O28-Mo2-O22	86.5(3)	O34-Mo3-O23	100.1(3)
01-Mo4-011 ²	73.1(2)	08-Mo5-O3	88.6(2)	013-Mo6-019 ²	87.3(2)
09-Mo4-01	73.3(2)	012-Mo5-O3	84.3(2)	O21-Mo6-O13	80.2(3)
09-Mo4-011 ²	87.0(2)	012-Mo5-08	80.6(3)	O21-Mo6-O19 ²	83.9(2)
09-Mo4-016	151.2(3)	012-Mo5-023	144.7(3)	O21-Mo6-O26	145.8(3)
016-Mo4-01	81.4(2)	O23-Mo5-O3	67.8(2)	O26-Mo6-O13	78.0(3)
016-Mo4-011 ²	72.4(2)	O23-Mo5-O8	77.5(2)	O26-Mo6-O19 ²	69.0(3)
024-Mo4-01	158.5(3)	027-Mo5-O3	168.7(3)	O31-Mo6-O13	172.7(3)
O24-Mo4-O9	98.8(3)	027-Mo5-08	84.7(3)	O31-Mo6-O19 ²	85.5(3)
024-Mo4-011 ²	86.7(3)	027-Mo5-012	103.5(3)	O31-Mo6-O21	99.9(3)
O24-Mo4-O16	99.9(3)	027-Mo5-023	101.8(3)	O31-Mo6-O26	98.5(3)
029-Mo4-01	96.1(3)	O33-Mo5-O3	84.0(3)	O31-Mo6-O35	102.4(4)
029-Mo4-09	101.3(3)	O33-Mo5-O8	172.4(3)	O35-Mo6-O13	84.6(3)
029-Mo4-011 ²	164.2(3)	O33-Mo5-O12	100.0(3)	O35-Mo6-O19 ²	168.3(3)
O29-Mo4-O16	94.8(3)	O33-Mo5-O23	98.3(3)	O35-Mo6-O21	102.9(3)
029-Mo4-024	105.1(3)	O33-Mo5-O27	102.4(4)	O35-Mo6-O26	101.0(4)
02-Mo7-015	81.5(2)	0112-Mo8-06	80.9(2)	O4-Mo9-O15	88.1(2)
02-Mo7-022	71.7(2)	016-Mo8-O6	79.3(2)	012-Mo9-O4	79.4(3)
015-Mo7-022	74.3(2)	O16-Mo8-O11 ²	74.2(2)	012-Mo9-015	82.3(2)
020-Mo7-02	151.4(3)	O32-Mo8-O6	73.8(3)	O12-Mo9-O20	143.4(3)
020-Mo7-015	74.7(3)	O32-Mo8-O11 ²	81.0(3)	O20-Mo9-O4	77.8(3)
O20-Mo7-O22	86.6(3)	O32-Mo8-O16	145.8(3)	O20-Mo9-O15	68.8(2)
O30-Mo7-O2	98.4(3)	O36-Mo8-O6	87.9(3)	O37-Mo9-O4	172.1(3)
O30-Mo7-O15	160.0(3)	O36-Mo8-O11 ²	167.3(3)	O37-Mo9-O12	98.9(3)
O30-Mo7-O20	98.6(3)	O36-Mo8-O16	98.0(3)	O37-Mo9-O15	84.0(3)
O30-Mo7-O22	86.6(3)	O36-Mo8-O32	101.7(3)	O37-Mo9-O20	99.8(3)
040-Mo7-O2	96.8(3)	O36-Mo8-O42	105.0(4)	O38-Mo9-O4	85.3(3)
040-Mo7-015	97.2(3)	O42-Mo8-O6	167.0(3)	O38-Mo9-O12	103.8(3)
O40-Mo7-O20	101.7(3)	042-Mo8-011 ²	86.5(3)	O38-Mo9-O15	170.0(3)
O40-Mo7-O22	166.3(3)	O42-Mo8-O16	100.1(3)	O38-Mo9-O20	102.4(3)

O40-Mo7-O30	102.6(3)	O42-Mo8-O32	101.4(3)	O38-Mo9-O37	102.6(4)
0192-Mo10-O6	72.6(2)	P1-015-Mo7	130.4(4)	P4-03-Mo3	130.2(3)
026-Mo10-06	86.7(2)	P1-015-Mo9	133.6(3)	P4-03-Mo5	132.0(3)
026-Mo10-019 ²	72.4(3)	P1-07-Mo2	126.6(3)	P4-04-Mo9	120.7(4)
032-Mo10-06	71.4(2)	P1-07-Mo3	129.3(3)	P4-022-Mo2	126.0(3)
032-Mo10-019 ²	83.4(3)	P1-08-Mo5	120.6(3)	P4-022-Mo7	128.1(3)
032-Mo10-026	151.5(3)	P2-013-Mo6	121.1(4)	O181-Tb1-O1W	77.8(2)
039-Mo10-06	86.9(3)	P2-06-Mo8	126.6(4)	O181-Tb1-O2W	71.7(2)
039-Mo10-019 ²	156.4(3)	P2-06-Mo10	127.1(4)	O181-Tb1-O3W	116.9(2)
039-Mo10-026	95.4(4)	P2-01-Mo1	135.2(3)	O181-Tb1-O5W	73.3(2)
O39-Mo10-O32	101.3(4)	P2-01-Mo4	129.3(3)	O181-Tb1-O1W	77.8(2)
041-Mo10-06	166.1(3)	P3-05-Mo12	119.7(3)	030-Tb1-018 ¹	138.0(2)
041-Mo10-019 ²	97.6(3)	P3-011-Mo42	128.6(3)	O30-Tb1-O1W	138.9(2)
041-Mo10-026	99.8(4)	P3-011-Mo82	126.3(4)	O30-Tb1-O2W	73.0(2)
041-Mo10-032	98.2(4)	P3-019-Mo62	133.7(4)	O30-Tb1-O3W	72.4(3)
041-Mo10-039	104.5(4)	P3-019-Mo10 ²	128.5(4)	O30-Tb1-O5W	127.0(2)
O1W-Tb1-O2W	114.8(3)	O4W-Tb1-O2W	143.5(2)	O30-Tb1-O6W	70.2(3)
O1W-Tb1-O3W	72.1(2)	O4W-Tb1-O3W	80.8(2)	O5W-Tb1-O3W	141.2(2)
O1W-Tb1-O5W	74.2(2)	04W-Tb1-05W	74.4(2)	06W-Tb1-0181	87.3(3)
O4W-Tb1-O18 ¹	144.4(2)	O4W-Tb1-O6W	96.4(3)	O6W-Tb1-O1W	145.1(3)
O4W-Tb1-O30	75.2(2)	O2W-Tb1-O3W	72.9(3)	O6W-Tb1-O2W	89.4(3)
O4W-Tb1-O1W	79.2(2)	O2W-Tb1-O5W	140.6(3)	O6W-Tb1-O3W	141.9(3)