Supporting Information

Electronic Metal-Support Interaction Constructed for Preparing Sinter-Resistant Nano-Platinum Catalyst with Redox Property

Bin Zheng, *a,b Jialong Duan, a and Qunwei Tang *a

^a Institute of New Energy Technology, College of Information Science and Technology, Jinan University, Guangzhou, 510632, P. R. China.

^b School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P. R. China.

* Corresponding author.

E-mail addresses: zhengbin@jnu.edu.cn (B. Zheng)

Scheme S1. Schematic illustration of the preparation of $NiFe_2O_4$ and $Pt/NiFe_2O_4$ samples.

Fig. S1 Pt NPs size distributions of $Pt/NiFe_2O_4$, Pt/NF-700Ar, Pt/NF-700O and Pt/NF-700O-200H samples.

Fig. S2 TEM image and Pt NPs size distributions of Pt colloids.

Fig. S3 STEM images of Pt/α -Fe₂O₃ (a, b) and Pt/Fe-700O (c, d) samples.

Fig. S4 STEM images of Pt/Fe-700O after H_2 reduction.

Fig. S5 Fe 2p XPS spectra of α -Fe₂O₃ support, Pt/ α -Fe₂O₃ and Pt/Fe-700O

samples. C 1s at 284.6 eV is taken as reference.

Fig. S6 Pt 4f XPS spectrum of Pt colloid nanoparticles. C 1s at 284.6 eV is taken as reference.

Fig. S7 Pt 4f XPS spectrum of Pt/ α -Fe₂O₃. C 1s at 284.6 eV is taken as reference.

Fig. S8 In-situ DRIFT CO adsorption spectra of Pt/α -Fe₂O₃ and Pt/α -Fe₂O₃-7000 (Pt/Fe-7000) samples.

Fig. S9 H₂-TPR profiles of α -Fe₂O₃, Pt/ α -Fe₂O₃ and Pt/Fe-700O samples.

Fig. S10 O 1s XPS spectra of α -Fe₂O₃ support, Pt/ α -Fe₂O₃ and Pt/Fe-700O samples.

Fig. S11 XRD patterns of prepared γ -Fe₂O₃ and Pt/ γ -Fe₂O₃ samples.

Fig. S12 CO oxidation activities of a) Pt/γ -Fe₂O₃, b) Pt/α -Fe₂O₃ under moisture condition and c) Pt/γ -Fe₂O₃, d) Pt/α -Fe₂O₃ under dry condition. Reaction conditions: 1 vol% CO, 5 vol% O₂/Ar, (1.8 vol% H₂O) and Ar balance, GHSV: 60000 mL·g⁻¹·h⁻¹.

Fig. S13 CO conversion versus time on stream over $Pt/NiFe_2O_4$ in the absence and

presence of water vapor.

Fig. S14 HAADF-STEM image (a) and Pt NPs size distributions (b) of $Pt/NiFe_2O_4$ catalyst after storage and long-period CO catalytic oxidation process.

Fig. S15 Catalytic performance of supported-Pt catalysts in CO oxidation as a

function of reaction time at room temperature.

Fig. S16 CO conversion versus time on stream over $Pt/NiFe_2O_4$ under moisture atmosphere without O_2 .

Fig. S17 Catalytic CO oxidation activities of a) Pt/NiFe₂O₄, b) Pt/ferrihydrite after treated at 50 °C for a week. Reaction conditions: 1 vol% CO, 5 vol% O₂/Ar, 1.8 vol% H₂O and Ar balance, GHSV: 60000 mL·g⁻¹·h⁻¹.

Fig. S18 XRD patterns of Pt/ferrihydrite (a) and Pt/ferrihydrite after 50 °C treatment for a week (b).

Fig. S19 FT-IR spectra of FeO(OH, H_2O)_n and NiFe₂O₄ samples.

Fig. S20 The magnetic properties of $Pt/NiFe_2O_4$ sample.

Fig. S21 Recycling tests over the Pt/NiFe₂O₄ catalyst. Reaction conditions: t = 25 °C, P = 5 bar, $m_{cat} = 50$ mg, 1 mmol nitrobenzene, 15 mL of toluene as solvent, reaction time: 2h.

Fig. S22 HAADF-STEM image (a) and Pt NPs size distributions (b) of $Pt/NiFe_2O_4$ catalyst after ten recycling tests for hydrogenation of nitrobenzene.

Samples	$S_{BET}(m^2 \cdot g^{-1})$	Pore Volume (cm ³ ·g ⁻¹)	Pore Size ^a (nm)
NiFe ₂ O ₄	34.8	0.10	119.8
Pt/NiFe ₂ O ₄	36.9	0.08	94.9
Pt/NF-700Ar	22.7	0.03	85.6
Pt/NF-7000	17.9	0.03	84.7
Pt/NF-7000-200H	31.3	0.06	82.2

Table S1. Texture properties of $NiFe_2O_4$ and $Pt/NiFe_2O_4$ samples treated at different conditions.

^a Average pore size calculated from desorption branches using BJH model.

Samples	$S_{BET}(m^2 \cdot g^{-1})$	Pore Volume (cm ³ ·g ⁻¹)	Pore Size ^a (nm)
α -Fe ₂ O ₃	33.2	0.18	138.8
Pt/α - Fe_2O_3	31.2	0.17	135.6
Pt/Fe-700O	16.5	0.10	92.2

Table S2. Texture properties of α -Fe₂O₃ and Pt/ α -Fe₂O₃ samples treated at different conditions.

^a Average pore size calculated from desorption branches using BJH model.

Samples	Na	0	Ni	Fe	Pt	$\mathrm{Fe_t}^{3+}/\mathrm{Fe_o}^{3+}$	O_{II} / O_{I}
NiFe ₂ O ₄	5.43	58.64	11.52	24.41		1.14	0.75
Pt/NiFe ₂ O ₄ -F	4.79	57.69	12.55	23.80	1.17	1.10	0.78
Pt/NiFe ₂ O ₄	4.68	58.72	11.46	23.41	1.73	1.16	0.81
Pt/NF-700Ar	4.84	60.57	11.86	21.01	1.71	1.13	0.79
Pt/NF-7000	4.79	59.73	12.02	21.80	1.67	1.11	0.76
Pt/NF-700O- 200H	2.66	56.56	12.57	26.63	1.58	1.14	0.80

Table S3. The surface element amounts of $NiFe_2O_4$ and $Pt/NiFe_2O_4$ samples treated at different conditions.

Samples	H ₂ consumption of the first peak (mmol·g ⁻¹)	H_2 consumption of the second peak (mmol·g ⁻¹)	H_2 consumption of the third peak (mmol·g ⁻¹)
Pt/NiFe ₂ O ₄	1.37	0.19	6.64
Pt/NF-700Ar	0.51	1.82	6.10
Pt/NF-7000	0	2.32	7.38
Pt/NF-700O-200H	0.42	1.75	6.08

Table S4. H_2 consumption of supported Pt catalyst calculated from H_2 -TPR profiles.