Supporting Information

Oxygenolysis of a series of copper(II)-flavonolate adducts varying the electronic factors on supporting ligands as a mimic of quercetin 2,4-dioxygenase-like activity

Nirmalya Podder,^a Subhasis Dey,^a Anakuthil Anoop,^{a*} and Sukanta Mandal^{a*}

^aDepartment of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.

E-mail: sukanta.mandal@chem.iitkgp.ac.in

anoop@chem.iitkgp.ac.in

Table of contents	Page no.
Table S1	S3
Table S2	S4
Scheme S1, Scheme S2	S5
Figure S1, Figure S2	S6
Figure S3, Figure S4	S7
Figure S5, Figure S6	S8
Figure S7, Figure S8	S 9
Figure S9, Figure S10	S10
Figure S11, Figure S12	S11
Figure S13, Figure S14	S12
Figure S15, Figure S16	S13
Table S3 – Table S6	S14
Figure S17	S15
Determination of equilibrium constant (K_{eq}) from	S15 – S17
spectrophotometric titration	~
Figure S18	S17
Figure S19, Figure S20	S18
Figure S21, Figure S22	S19
Figure S23, Figure S24	S20
Figure S25, Figure S26	S21
Table S7, Figure S27, Figure S28	S22
Figure S29, Figure S30	S23
Figure S31, Figure S32	S24
Figure S33, Table S8	S25
Figure S34	S26
Figure S35, Figure S36	S27
Figure S37, Table S9	S28
Figure S38, Figure S39	S29
Figure S40, Table S10	S30
Table S11 – Table S21	S31 - S44

	I·2H ₂ O	II·MeOH	III-2H ₂ O	IV·MeOH
CCDC	2112719	2112720	2112721	2112723
Chemical formula	$C_{23}H_{27}CuN_3O_7$	$C_{23}H_{25}CuN_3O_5$	C ₂₂ H ₂₄ ClCuN ₃ O ₆	$C_{23}H_{24}CuN_4O_7$
Formula weight	521.02	487.01	525.44	532.01
Temperature (K)	296(2)	296(2)	296(2)	296(2)
λ (Å)	<i>M</i> o- <i>K</i> α (0.71073)	<i>M</i> o- <i>K</i> α (0.71073)	<i>M</i> o- <i>K</i> α (0.71073)	<i>M</i> o- <i>K</i> α (0.71073)
Crystal system	Triclinic	Monoclinic	Triclinic	Triclinic
Space group	$P\overline{1}$ (no. 2)	P21/n (no. 14)	$P\overline{1}$ (no. 2)	<i>P</i> 1̄ (<i>no.</i> 2)
a (Å)	8.7650(10)	17.329(5)	8.735(4)	8.813(7)
<i>b</i> (Å)	10.2565(12)	11.650(3)	10.000(4)	10.131(5)
<i>c</i> (Å)	13.7578(15)	24.282(6)	13.704(6)	14.050(12)
α (°)	85.880(3)	90	85.767(14)	87.22(4)
$\beta(^{\circ})$	74.947(3)	109.405(13)	76.846(12)	77.53(5)
γ ^(°)	75.207(3)	90	73.237(12)	72.62(4)
$V/(Å^3)$	1154.8(2)	4624(2)	1116.0(8)	1168.8(15)
Z	2	8	2	2
$D_{\rm c} ({\rm g}{\rm cm}^{-3})$	1.493	1.396	1.552	1.509
$\mu (\mathrm{mm}^{-1})$	0.995	0.983	1.143	0.986
Reflections measured	15646	135862	12242	13441
Unique reflections [<i>R</i> _{int}]	5310 [0.0341]	11412 [0.0564]	3635 [0.0669]	5953 [0.0271]
Number of reflections used	4636	7707	2808	4860
$[I > 2\sigma(I)]$				
Number of parameters	324	579	307	317
Final R indices	${}^{\mathrm{a}}R_{1} = 0.0387;$	${}^{\mathrm{a}}R_{1} = 0.0426;$	${}^{\mathrm{a}}R_{1} = 0.0729;$	${}^{\mathrm{a}}R_{1} = 0.0514;$
	${}^{\rm b}wR_2 = 0.1057$	${}^{\rm b}wR_2 = 0.1103$	${}^{\rm b}wR_2 = 0.2063$	${}^{b}wR_{2} = 0.1528$
R indices (all data)	${}^{\mathrm{a}}R_{1} = 0.0452;$	${}^{\mathrm{a}}R_{1} = 0.0787;$	${}^{\mathrm{a}}R_{1} = 0.0947;$	${}^{\mathrm{a}}R_{1} = 0.0642;$
	${}^{\rm b}wR_2 = 0.1132$	${}^{\rm b}wR_2 = 0.1380$	${}^{\rm b}wR_2 = 0.2506$	${}^{\rm b}wR_2 = 0.1616$
Goodness-of-fit on F^2	1.070	1.079	1.192	1.062
Largest residual peak and hole $(e.\text{\AA}^{-3})$	0.667 and -0.627	0.566 and -0.589	0.955 and -2.278	0.675 and -0.421

Table S1. Data collection and structure refinement parameters for I[.]2H₂O, II[.]MeOH, III[.]2H₂O and IV[.]MeOH

 ${}^{a}R_{1} = \Sigma(|F_{o}| - |F_{c}|)/\Sigma|F_{o}|. {}^{b}wR_{2} = \{\Sigma[w(|F_{o}|^{2} - |F_{c}|^{2})^{2}]/\Sigma[w(|F_{o}|^{2})^{2}]\}^{1/2}.$

	1 [.] CH ₂ Cl ₂ [.] 1.5H ₂ O	2·CH ₂ Cl ₂ ·H ₂ O	5 [.] 2H ₂ O
CCDC	2112724	2112725	2112726
Chemical formula	2(C ₃₇ H ₃₄ Cl ₂ CuN ₃ O _{7.5})	$C_{36}H_{31}Cl_2CuN_3O_6$	$C_{36}H_{33}N_3O_8Zn$
Formula weight	2*(775.13)	736.10	701.04
Temperature (K)	296(2)	296(2)	296(2)
λ (Å)	<i>M</i> o- <i>K</i> α (0.71073)	<i>M</i> o- <i>K</i> α (0.71073)	$Mo-K\alpha$ (0.71073)
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	C2/c (no. 15)	$P2_{1}/c$ (no. 14)	$P2_{1}/c$ (no. 14)
a (Å)	38.679(14)	16.4553(11)	17.50(2)
<i>b</i> (Å)	12.824(4)	9.4294(6)	21.47(3)
<i>c</i> (Å)	15.166(5)	20.5153(14)	8.797(17)
α (°)	90	90	90
β(°)	108.650(9)	90.578(2)	91.34(5)
γ (°)	90	90	90
$V/(Å^3)$	7127(4)	3183.1(4)	3304(9)
Z	4	4	4
$D_{\rm c} ({\rm g}{\rm cm}^{-3})$	1.439	1.532	1.401
$\mu (\mathrm{mm}^{-1})$	0.818	0.908	0.800
Reflections measured	131686	36525	27282
Unique reflections [<i>R</i> _{int}]	7263 [0.0610]	5586 [0.0928]	8099 [0.0997]
Number of reflections used	5879	3853	3071
$[I > 2\sigma(I)]$			
Number of parameters	456	427	433
Final R indices	${}^{a}R_{1} = 0.0502; {}^{b}wR_{2} =$	${}^{\mathrm{a}}R_1 = 0.0570; {}^{\mathrm{b}}wR_2 =$	${}^{\mathrm{a}}R_1 = 0.0791; {}^{\mathrm{b}}wR_2 =$
	0.1454	0.1511	0.1942
R indices (all data)	${}^{a}R_{1} = 0.0651; {}^{b}wR_{2} =$	${}^{\mathrm{a}}R_1 = 0.0869; {}^{\mathrm{b}}wR_2 =$	${}^{\mathrm{a}}R_1 = 0.2111; {}^{\mathrm{b}}wR_2 =$
	0.1666	0.1733	0.2674
Goodness-of-fit on F^2	1.021	1.058	1.011
Largest residual peak and	1.157 and -0.667	0.630 and -0.865	0.699 and -0.408
hole (e.Å ⁻³)			

Table S2. Data collection and structure refinement parameters for $1 \cdot CH_2Cl_2 \cdot 1.5H_2O$, $2 \cdot CH_2Cl_2 \cdot H_2O$ and $5 \cdot 2H_2O$.

 ${}^{a}R_{1} = \Sigma(|F_{o}| - |F_{c}|)/\Sigma|F_{o}|. {}^{b}wR_{2} = \{\Sigma[w(|F_{o}|^{2} - |F_{c}|^{2})^{2}]/\Sigma[w(|F_{o}|^{2})^{2}]\}^{1/2}.$

Scheme S1. General synthetic route of ligands LiL^{R} (R = -OMe, -H, -Cl).

Scheme S2. Synthetic route of ligand LiL^{NO2}.

Figure S1. HRMS-ESI(+) spectrum of ligand LiL^{OMe} in methanol with a trace quantity of HCOOH.

Figure S2. HRMS-ESI(+) spectrum of ligand LiL^{H} in methanol with a trace quantity of HCOOH.

Figure S3. HRMS-ESI(+) spectrum of ligand LiL^{Cl} in methanol with a trace quantity of HCOOH.

Figure S4. HRMS-ESI(+) spectrum of ligand LiL^{NO2} in methanol with a trace quantity of HCOOH.

Figure S5. ATR-FTIR spectra (solid samples) of the lithium salts of ligands: (a) LiL^{OMe} ; (b) LiL^{H} ; (c) LiL^{Cl} and (d) LiL^{NO2} .

Figure S6. ¹H NMR (400 MHz, CD₃OD, 300 K) spectrum of ligand LiL^{OMe}. Symbols (◊) and (*) denote water and solvent residual peaks, respectively.

Figure S7. ¹H NMR (400 MHz, CD₃OD, 300 K) spectrum of ligand LiL^H. Symbols (◊) and (*) denote water and solvent residual peaks, respectively.

Figure S8. ¹H NMR (400 MHz, CD₃OD, 300 K) spectrum of ligand LiL^{Cl}. Symbols (\diamond) and (*) denote water and solvent residual peaks, respectively.

Figure S9. ¹H NMR (400 MHz, CD₃OD, 300 K) spectrum of ligand LiL^{NO2}. Symbols (\diamond) and (*) denote water and solvent residual peaks, respectively.

Figure S10. HRMS-ESI(+) spectrum of $[Cu(L^{OMe})(OAc)]$ (I) in methanol with a trace quantity of HCOOH.

Figure S11. HRMS-ESI(+) spectrum of $[Cu(L^H)(OAc)]$ (**II**) in methanol with a trace quantity of HCOOH.

Figure S12. HRMS-ESI(+) spectrum of $[Cu(L^{Cl})(OAc)]$ (**III**) in methanol with a trace quantity of HCOOH.

Figure S13. HRMS-ESI(+) spectrum of $[Cu(L^{NO2})(OAc)]$ (**IV**) in methanol with a trace quantity of HCOOH.

Figure S14. ATR-FTIR spectra (solid samples) of acetate-bound copper(II) complexes: (a) $[Cu(L^{OMe})(OAc)]$ ·2H₂O (**I**·2**H**₂O); (b) $[Cu(L^{H})(OAc)]$ ·MeOH (**II·MeOH**); (c) $[Cu(L^{Cl})(OAc)]$ ·2H₂O (**III·2H₂O**) and (d) $[Cu(L^{NO2})(OAc)]$ ·MeOH (**IV·MeOH**).

Figure S15. UV-vis spectra of the acetate-bound copper(II) complexes in methanol: (a) $[Cu(L^{OMe})(OAc)]$ ²H₂O (**I**·2**H**₂O); (b) $[Cu(L^{H})(OAc)]$ [·]MeOH (**II·MeOH**); (c) $[Cu(L^{Cl})(OAc)]$ [·]2H₂O (**III·2H₂O**) and (d) $[Cu(L^{NO2})(OAc)]$ [·]MeOH (**IV·MeOH**).

Figure S16. (a) Electronic absorption spectra of the complexes $[Cu(L^R)(OAc)]$ (**I-IV**) in MeOH (only *d-d* bands are shown). (b) Plot of λ_{max} values of the *d-d* bands of $[Cu(L^R)(OAc)]$ (**I-IV**) versus Hammett constants σ .

Table S3. Selected l	oond lengths (Å) and bond	l angles (°) of I·2H₂O	
Cu(1) - N(1)	2.0442(19)	N(1)-Cu(1)-N(2)	81.33(8)
Cu(1) - N(2)	2.0124(18)	N(1)-Cu(1)-N(3)	77.91(7)
Cu(1) - N(3)	2.3571(19)	N(2)-Cu(1)-N(3)	83.58(7)
Cu(1) - O(1)	1.9464(16)	N(1)-Cu(1)-O(1)	84.30(7)
Cu(1) - O(3)	1.9418(17)	N(1)-Cu(1)-O(3)	178.54(7)
		N(2)-Cu(1)-O(1)	163.42(8)
		N(2)-Cu(1)-O(3)	100.10(8)
		N(3)-Cu(1)-O(1)	101.47(7)
		N(3)-Cu(1)-O(3)	102.50(7)
		O(1)–Cu(1)–O(3)	94.24(7)

Table S4. Selected bond	lengths (Å) and bor	nd angles (°) of II·MeOH	
Cu(1)–N(1a)	2.056(2)	Cu(2)–N(1b)	2.049(2)
Cu(1)–N(2a)	2.014(2)	Cu(2)–N(2b)	2.026(2)
Cu(1)–N(3a)	2.402(3)	Cu(2)–N(3b)	2.508(2)
Cu(1)–O(1a)	1.937(2)	Cu(2)–O(1b)	1.9347(19)
Cu(1)–O(3a)	1.948(2)	Cu(2)–O(3b)	1.966(2)
N(1a)-Cu(1)-N(2a)	81.67(10)	N(1b)-Cu(2)-N(2b)	82.39(9)
N(1a)-Cu(1)-N(3a)	77.06(9)	N(1b)-Cu(2)-N(3b)	74.60(8)
N(2a)-Cu(1)-N(3a)	83.37(9)	N(2b)-Cu(2)-N(3b)	84.12(8)
N(1a)-Cu(1)-O(1a)	83.98(9)	N(1b)-Cu(2)-O(1b)	85.41(8)
N(1a)-Cu(1)-O(3a)	177.09(10)	N(1b)-Cu(2)-O(3b)	175.98(8)
N(2a)-Cu(1)-O(1a)	165.22(10)	N(2b)-Cu(2)-O(1b)	167.51(8)
N(2a)–Cu(1)–O(3a)	99.10(10)	N(2b)-Cu(2)-O(3b)	95.09(9)
N(3a)–Cu(1)–O(1a)	96.86(10)	N(3b)-Cu(2)-O(1b)	90.07(8)
N(3a)–Cu(1)–O(3a)	105.81(10)	N(3b)–Cu(2)–O(3b)	108.33(8)
O(1a)-Cu(1)-O(3a)	95.06(10)	O(1b)–Cu(2)–O(3b)	97.24(8)
Table S5. Selected bond	lengths (Å) and bor	nd angles (°) of III·2H ₂ O	
Cu(1) - N(1)	2.032(5)	N(1)-Cu(1)-N(2)	82.0(2)
Cu(1) - N(2)	2.023(6)	N(1)-Cu(1)-N(3)	77.44(19)
Cu(1) - N(3)	2.340(5)	N(2)-Cu(1)-N(3)	83.9(2)
Cu(1)–O(1)	1.925(5)	N(1)-Cu(1)-O(1)	83.5(2)
Cu(1)–O(3)	1.931(4)	N(1)-Cu(1)-O(3)	178.7(2)
		N(2)-Cu(1)-O(1)	163.3(2)
		N(2)-Cu(1)-O(3)	99.1(2)
		N(3)-Cu(1)-O(1)	100.92(19)
		N(3)-Cu(1)-O(3)	103.32(18)
		O(1)–Cu(1)–O(3)	95.3(2)

Cu(1)–N(1)	2.050(3)	N(1)–Cu(1)–N(2)	81.18(12)
Cu(1)-N(2)	2.028(3)	N(1)-Cu(1)-N(3)	76.94(11)
Cu(1)-N(3)	2.392(3)	N(2)-Cu(1)-N(3)	84.03(12)
Cu(1) - O(1)	1.936(3)	N(1)-Cu(1)-O(1)	83.79(12)
Cu(1) - O(3)	1.933(3)	N(1)-Cu(1)-O(3)	178.81(11)
		N(2)-Cu(1)-O(1)	162.98(12)
		N(2)-Cu(1)-O(3)	99.55(13)
		N(3)-Cu(1)-O(1)	100.33(12)
		N(3)-Cu(1)-O(3)	104.05(12)
		O(1)-Cu(1)-O(3)	95.35(13)

Figure S17. Spectrophotometric titration curves for the formation of Cu(II)-flavonolate adducts upon addition of flavonolate into the methanol solution of complex (a) $[Cu(L^{OMe})(OAc)]$, (b) $[Cu(L^{H})(OAc)]$, (c) $[Cu(L^{Cl})(OAc)]$, (d) $Cu(L^{NO2})(OAc)]$ at room temperature under N₂. Inset shows the growth of $\pi \to \pi^*$ bands due to coordinated flavonolate.

Determination of equilibrium constant (*K*_{eq}) from spectrophotometric titration

$$[L^{R}Cu-OAc]_{t} + [fla^{-}]_{t} \xleftarrow{K_{eq}} [L^{R}Cu-fla]_{t} + [OAc^{-}]_{t}$$

The equilibrium constant can be expressed as:
$$K_{eq} = \frac{[L^{R}Cu-fla]_{t} * [OAc^{-}]_{t}}{[L^{R}Cu-OAc]_{t} * [fla^{-}]_{t}}$$
(S1)

The concentration of $[L^{R}Cu-fla]_{t}$, $[L^{R}Cu-OAc]_{t}$, $[fla^{-}]_{t}$ and $[OAc^{-}]_{t}$ species are determined considering the mass balance. A known concentration of $[L^{R}Cu-OAc]$ was taken in a UV-vis cuvette (pathlength = 1 cm) and its absorption spectrum was recorded. Then, a known concentration of fla⁻ was added portion-wise and the absorbance at 408-421 nm due to $\pi \rightarrow \pi^{*}$ band of Cu-bound flavonolate was measured. Each addition of fla⁻ makes the solution diluted; therefore, the volume correction due to dilution was performed for the observed absorbance at each titration.

At the beginning of the titration, when the solution is purely $[L^{R}Cu-OAc]$ the initial absorbance at any wavelength can be expressed as:

 $A_i = \mathcal{E}_{LRCu-OAc} [L^RCu-OAc] \dots (S2)$

Then fla⁻ was added gradually to the solution of $[L^{R}Cu-OAc]$ to form complex $[L^{R}Cu-fla]$. [fla⁻]_a is the amount of fla⁻ added to the solution at any given point of titration. At the end of the titration when all $[L^{R}Cu-OAc]$ are converted to $[L^{R}Cu-fla]$ by adding excess fla⁻, the final absorbance at any wavelength can be given as:

$$A_{f} = \mathcal{E}_{LRCu-fla} \left[L^{R}Cu-fla \right] \dots (S3)$$

Following mass balance, at any point of titration the total concentration of Cu^{II} ion can be expressed as:

 $[L^{R}Cu-OAc]_{i} = [L^{R}Cu-fla]_{f} = [L^{R}Cu-OAc]_{t} + [L^{R}Cu-fla]_{t} \dots (S4)$

Since fla⁻ is substituting the bound OAc⁻, we can write:

 $[fla_{a}]_{a} = [fla_{b}]_{t} + [OAc_{b}]_{t} \dots (S5)$

Assuming the mass balance as described above, the ratio of $[L^{R}Cu-fla]_{t}/[L^{R}Cu-OAc]_{t}$ at any point of titration can be expressed as:

$$\frac{A_{t} - A_{i}}{A_{f} - A_{t}} = \frac{\varepsilon_{LRCuOAc}[L^{R}CuOAc]_{t} + \varepsilon_{LRCufla}[L^{R}Cufla]_{t} - \varepsilon_{LRCuOAc}[L^{R}CuOAc]_{i}}{\varepsilon_{LRCufla}[L^{R}Cufla]_{f} - \varepsilon_{LRCuOAc}[L^{R}CuOAc]_{t} - \varepsilon_{LRCufla}[L^{R}Cufla]_{t}}$$
$$= \frac{\varepsilon_{LRCuOAc}\{[L^{R}CuOAc]_{t} - [L^{R}CuOAc]_{i}\} + \varepsilon_{LRCufla}[L^{R}Cufla]_{t}}{\varepsilon_{LRCufla}\{[L^{R}Cufla]_{f} - [L^{R}Cufla]_{t}\} - \varepsilon_{LRCuOAc}[L^{R}CuOAc]_{t}}$$

$$= \frac{\varepsilon_{LRCufla}[L^{R}Cufla]_{t} - \varepsilon_{LRCuOAc}[L^{R}Cufla]_{t}}{\varepsilon_{LRCufla}[L^{R}CuOAc]_{t} - \varepsilon_{LRCuOAc}[L^{R}CuOAc]_{t}}$$

$$= \frac{\left[L^{R} Cufla\right]_{t} \{\varepsilon_{LRCufla} - \varepsilon_{LRCuOAc}\}}{\left[L^{R} CuOAc\right]_{t} \{\varepsilon_{LRCufla} - \varepsilon_{LRCuOAc}\}} = \frac{\left[L^{R} Cufla\right]_{t}}{\left[L^{R} CuOAc\right]_{t}} \dots (S6)$$

Therefore,
$$[L^{R}Cufla]_{t} = \frac{A_{t} - A_{i}}{A_{f} - A_{t}} [L^{R}CuOAc]_{t}$$

So, $[L^{R}Cufla]_{t} = \frac{A_{t} - A_{i}}{A_{f} - A_{t}} \{[L^{R}CuOAc]_{i} - [L^{R}Cufla]_{t}\}$ (S7)

Rearranging eq. (S7), the concentration of $[L^{R}Cufla]_{t}$ can be expressed in terms of initial concentration of $[L^{R}CuOAc]_{i}$ as:

$$[L^{R}Cufla]_{t} = \frac{\frac{A_{t}-A_{i}}{A_{f}-A_{t}}}{1+\frac{A_{t}-A_{i}}{A_{f}-A_{t}}} [L^{R}CuOAc]_{i} \dots \dots \dots \dots (S8)$$

At equilibrium, the concentration of $[L^{R}Cufla]_{t}$ is equal to the concentration of $[OAc^{-}]_{t}$. $[L^{R}Cufla]_{t} = [OAc^{-}]_{t}$(S9) So, from eq. (S5) & (S9): $[fla_{a} = [fla_{t}]_{t} + [OAc_{t}]_{t} = [fla_{t}]_{t} + [L^{R}Cufla]_{t}$

So,
$$[fla^-]_t = [fla^-]_a - [L^R Cufla]_t = [fla^-]_a - \frac{\frac{A_t - A_i}{A_f - A_t}}{1 + \frac{A_t - A_i}{A_f - A_t}} [L^R CuOAc]_i \dots (S10)$$

The equilibrium constant described in eq. (S1) can be rearranged as:

$$K_{eq}[fla^{-}]_{t} = \frac{[L^{R}Cufla]_{t} [OAc^{-}]_{t}}{[L^{R}CuOAc]_{t}}$$

The values of $[L^{R}Cufla]_{t}/[L^{R}CuOAc]_{t}$, $[OAc^{-}]_{t}$ and $[fla^{-}]_{t}$ can be determined from equations (S6), (S9) and (S10), respectively.

Therefore, the plot of $[fla^-]_t$ vs $\frac{[L^R Cufla]_t [OAc^-]_t}{[L^R CuOAc]_t}$ gives a straight line and the slope of the line gives the value of equilibrium constant, K_{eq} .

Figure S18. Plots of $\{[Cu(L^R)(fla)]_t^*[OAc^-]_t\}/[Cu(L^R)(OAc)]_t$ *versus* $[fla^-]_t$ to determine the equilibrium constants (K_{eq}). The slope of the linear fit represents K_{eq} value.

Figure S19. ATR-FTIR spectra (solid samples) of copper(II)-flavonolate complexes: (a) $[Cu(L^{OMe})(fla)] \cdot CH_2Cl_2 \cdot 1.5H_2O$ $(1 \cdot CH_2Cl_2 \cdot 1.5H_2O)$; (b) $[Cu(L^H)(fla)] \cdot CH_2Cl_2 \cdot H_2O$ $(2 \cdot CH_2Cl_2 \cdot H_2O)$; (c) $[Cu(L^{Cl})(fla)] \cdot 2H_2O$ (3 · 2H_2O) and (d) $[Cu(L^{NO2})(fla)] \cdot 3H_2O$ (4 · 3H_2O).

Figure S20. HRMS-ESI(+) spectrum of [Cu(L^{OMe})(fla)] (1) in methanol.

Figure S21. HRMS-ESI(+) spectrum of $[Cu(L^H)(fla)]$ (2) in methanol.

Figure S22. HRMS-ESI(+) spectrum of [Cu(L^{Cl})(fla)] (3) in methanol.

Figure S23. HRMS-ESI(+) spectrum of [Cu(L^{NO2})(fla)] (4) in methanol.

Figure S24. UV-vis spectra of copper(II)-flavonolate complexes in methanol: (a) $[Cu(L^{OMe})(fla)] CH_2Cl_2 1.5H_2O$ (1·CH₂Cl₂·1.5H₂O); (b) $[Cu(L^H)(fla)] CH_2Cl_2 H_2O$ (2·CH₂Cl₂·H₂O); (c) $[Cu(L^{Cl})(fla)] 2H_2O$ (3·2H₂O) and (d) $[Cu(L^{NO2})(fla)] 3H_2O$ (4·3H₂O).

Figure S25. (a) Electronic absorption spectra of the complexes $[Cu(L^R)(fla)]$ (1-4) in MeOH. (b) Plot of λ_{max} values of the $\pi \rightarrow \pi^*$ transition of the coordinated fla⁻ in complexes $[Cu(L^R)(fla)]$ (1-4) versus Hammett constants σ .

Figure S26. Experimental (black line) and simulated (red line) X-band EPR spectra of Cu(II)flavonolate complexes in methanol at 298 K: (a) $[Cu(L^{OMe})(fla)]$ (1); (b) $[Cu(L^{H})(fla)]$ (2); (c) $[Cu(L^{Cl})(fla)]$ (3); (d) $[Cu(L^{NO2})(fla)]$ (4). Microwave frequency \approx 9.64 GHz (1), 9.65 GHz (2), 9.36 GHz (3), 9.36 (4); microwave power = 15 mW; modulation frequency = 5 kHz; modulation amplitude = 3 G.

Complex 1	Complex 2	Complex 3	Complex 4
$g_{iso} = 2.12$ $A_{iso} = 160.40 \text{ MHz}$ $g\text{-strain} = 0.055$ $A\text{-strain} = 58.40 \text{ MHz}$	$g_{iso} = 2.13$ $A_{iso} = 200 \text{ MHz}$ $g\text{-strain} = 0.045$ $A\text{-strain} = 50 \text{ MHz}$	$g_{\perp} = 2.125$ $g_{1} = 2.30$ $A_{\perp} = 192.43 \text{ MHz}$ $A_{l} = 23.43 \text{ MHz}$ $g_{\perp} \text{-strain} = 0.040$ $g_{l} \text{-strain} = 0.125$ $A_{\perp} \text{-strain} = 48.30 \text{ MHz}$	$g_{\perp} = 2.123$ $g_{1} = 2.30$ $A_{\perp} = 211.94$ MHz $A_{\perp} = 40$ MHz g_{\perp} -strain = 0.035 g_{\parallel} -strain = 0.099 A_{\perp} -strain = 50 MHz
		A_{I} -strain = 5 MHz	A_{I} -strain = 10 MHz

Table S7. Parameters for the simulations of the EPR signals of complexes 1-4 as depicted in Figure S26

Figure S27. UV-vis spectrum of $[Zn(L^{OMe})(fla)]$ ^{·2}H₂O (5·2H₂O) in methanol.

Figure S28. ATR-FTIR spectrum (solid sample) of [Zn(L^{OMe})(fla)][•]2H₂O (5•2H₂O).

Figure S29. HRMS-ESI(+) spectrum of [Zn(L^{OMe})(fla)] (5) in methanol.

Figure S30. ¹H NMR spectrum (500 MHz, 300 K) of complex [Zn(L^{OMe})(fla)] (5) in CD₃OD.

Figure S31. 2D ¹H ¹H COSY (500 MHz, 300 K) of complex [Zn(L^{OMe})(fla)] (5) in CD₃OD.

Figure S32. ¹³C NMR spectrum (125 MHz, 300 K) of complex [Zn(L^{OMe})(fla)] (**5**) in CD₃OD.

Figure S33. Cyclic voltammograms of the metal-flavonolate complexes **1-5** in DMF (scan rate: 100 mV/s; supporting electrolyte: KPF₆).

	<i>o</i> -benzoyl -salicylic acid (RT: 21.73)	salicylic acid (RT: 13.29)	benzoic acid (RT: 17.37- 17.43)	2-hydroxy- <i>N</i> , <i>N</i> - dimethyl -benzamide (RT: 15.30)	<i>N</i> , <i>N</i> -dimethyl -benzamide (RT: 11.25)
$[Cu(L^{OMe})(fla)] (1)$	22	-	67	-	11
$[Cu(L^{H})(fla)](2)$	13	19	11	54	3
$[Cu(L^{Cl})(fla)] (3)$	72	-	27	-	1
$[Cu(L^{NO2})(fla)]$ (4)	10	-	29	59	2
$[Zn(L^{OMe})(fla)]$ (5)	42	-	-	57	1

Table S8. Percentage of product distribution obtained from GC-MS analysis

Figure S34. Reaction product analysis by GC-MS. (Top left) Representative GC-MS chromatogram for complex **2**. The illustrative mass spectra of products from few selected reaction solutions: (top right) *o*-benzoylsalicylic acid (from **3**), (middle left) salicylic acid (from **2**), (middle right) benzoic acid (from **4**), (bottom left) 2-hydroxy-*N*,*N*-dimethylbenzamide (from **2**) and (bottom right) *N*,*N*-dimethylbenzamide (from **2**).

Figure S35. ¹H NMR spectrum (in CDCl₃) of the degraded products obtained from [L^HCu(fla)] (2). Signals correspond to mixture of benzoic acid [δ (ppm) = 8.12 (d, 2H), 7.62 (t, 1H), 7.48 (t, 2H))] and salicylic acid [δ (ppm) = 7.93 (d, 1H), 7.51 (t, 1H), 7.01 (d, 1H), 6.93 (t, 1H)] in 60:40 ratio.

Figure S36. ORTEP (30% ellipsoid) diagram of the salicylate bound copper(II) complex, [Cu(L^H)(sal)]. Hydrogen atoms are omitted for clarity. Carbon atoms are not labelled. {Crystal data: CCDC = 2112727, λ (Å): *M*o-*K* α (0.71073), Monoclinic, *P*2₁/*n* (# 14), *a* = 18.135(4) Å, *b* = 9.278(2) Å, *c* = 15.307(3) Å, $\alpha = \gamma = 90^{\circ}$, $\beta = 103.47(3)^{\circ}$, *V* = 2504.6(10) Å³, *Z* = 4, *D*_c = 1.411 g cm⁻³, Reflections measured = 15536, Unique reflections [*R*_{int}] = 5303 [0.1383], Number of reflections used [*I* > 2 σ (*I*)] = 2890, Final *R* indices: *R*₁ = 0.0577, *wR*₂ = 0.1402, *R* indices (all data): *R*₁ = 0.1173, *wR*₂ = 0.1825, Goodness-of-fit on *F*² = 0.960, T = 296(2) K}.

Figure S37. Mulliken atomic spin density plots of (a) $[Cu(L^{OMe})(fla)]$ (1), (b) $[Cu(L^{H})(fla)]$ (2), (c) $[Cu(L^{Cl})(fla)]$ (3), and (d) $[Cu(L^{NO2})(fla)]$ (4) in doublet ground state.

			Spin Density		
Complex	Spin State	Cu	fla	$\mathbf{L}^{\mathbf{R}}$	
$[Cu(L^{OMe})(fla)] (1)$	doublet	0.698	0.089	0.276	
$[Cu(L^{H})(fla)]$ (2)	doublet	0.660	0.104	0.236	
$[Cu(L^{Cl})(fla)]$ (3)	doublet	0.689	0.079	0.278	
$[Cu(L^{NO2})(fla)]$ (4)	doublet	0.697	0.088	0.267	

Table S9. Mulliken atomic spin density values of complexes 1-4.

Figure S38. Electronic spectra of complex $[Cu(L^H)(fla)]$ (2) (~6.5 mM) in DMF at: (black line) room temperature, and (red line) 80 °C under N₂ atmosphere. The visible region bands correspond to the *d*-*d* transitions.

Figure S39. Spectral changes of reaction of $[Cu(L^H)(fla)]$ (2) with NBT under O_2 in DMF.

Figure S40. Optimized structures of various transition states (**TS**s) and intermediates (**I**s) of oxygenolysis reaction starting with complex $[Cu(L^H)(fla)]$ (**2**). The bond lengths are shown in Å. Color code: Cu, magenta; C, gray; N, blue; O, red; H, white.

Table S10. Mulliken atomic spin density values of various states during oxygenolysis reaction with complex $[Cu(L^{H})(fla)]$ (2)

State	Cu	fla	Op	Od	$\mathbf{L}^{\mathbf{H}}$
⁴ R	0.670	0.101	1.022	0.976	0.231
⁴ TS1	0.686	0.690	0.611	0.760	0.253
⁴ I1	0.677	1.045	0.310	0.708	0.260
² TS2	0.683	-0.692	0.144	0.601	0.264
² I2	0.683	0.093	0	0	0.224
² TS3	0.678	0.053	0	-0.002	0.271
² I3	0.662	0.105	-0.001	0	0.234
² TS4	0.650	0.053	0.056	0.004	0.237
² P	0.669	0.083	0	-0.001	0.249

	-0 07252882939979	-0.32060697486603	-0 16859498155090
O	1 73831796591/38	-0.68727535080118	0.39368386280761
0	0 66100070301089	1 7/6709/7015307	0.76000025500567
N	-2 00121734123350	0 02/0756506132/	
	-2.09121734123330	0.02497505901524	1 02605004042421
U	0.19032853623221	0.43338066617237	-1.93603994043421
N	-0.92724357629547	-0.82860284935306	1.66253770869354
0	4.654568/1//0223	1.43053709378649	0.20660648027829
С	1.88024777310193	1.6/08/74039/754	0.58697271985497
С	2.52020761925328	0.35623361084048	0.37488268950420
С	-0.30919282465011	-0.85131824740632	2.83739486770211
Н	0.76704429183966	-0.65853153395306	2.80227778200688
С	2.75770989679278	2.83460642435582	0.57073177588948
0	-0.93852424182513	1.18171622165171	-3.72266689870582
С	-0.86324386447026	0.61538433699662	-2.65142829435322
С	4.12991620382537	2.64770748871546	0.37437180590546
С	-2.37741983317810	1.38576741628141	-0.06766611448248
Н	-1.65865381059695	2.05937926399467	-0.55588208327102
Н	-2.12257442158456	1.40742155065181	1.00087579839662
С	3.88605568693485	0.29914323457165	0.19477027106730
C	-2 24057949543765	-1.05665157919009	1 57050149602970
C	2 26097988202465	4 14135558720171	0 74554321104343
ч	1 18477826568139	4 25628159875901	0 89120045278313
C	-2 75888666276079	-1 06//5879073820	0 13671625071403
	2 95001666751400	-1.00445075075020	0.12202024621150
п	-3.85901000751409	-0.97527175052504	0.12292934031139
C	6.2/383602436326	-3.20356766814234	-0.46200978660923
H	6.88621426733059	-4.09216321347597	-0.63592209793772
С	-2.3/626433530883	-1.35020336701455	3.93/98953191/43
Н	-2.95309040992119	-1.55301995272010	4.8436856343244/
С	4.69278015762509	-0.91415862074596	-0.02087841378505
С	-3.01132021245786	-1.32584957337183	2.69503493029319
Н	-4.08363640868331	-1.50988654161895	2.59982704828961
С	5.00761744971566	3.74571814849048	0.35281552679058
Н	6.07267671750663	3.56559377442077	0.19638115481219
С	-3.79427917994956	1.86371056440503	-0.28327514141942
С	4.49692473366933	5.01723321800542	0.52634820091365
Н	5.17524289726260	5.87407667621886	0.50717240877515
С	-1.00653173381707	-1.11279035652669	4.01514549163019
Н	-0.48178277051184	-1.12545306979602	4.97172674545922
С	3.11665965501232	5.22329806819919	0.72394240054302
Н	2.73048746817489	6.23647238799704	0.85469114179268
С	6.05389502513174	-0.79922111910349	-0.35398648498458
H	6 49903487265829	0 19190626618675	-0.44640687517214
C	4 13929764455155	-2 20214087698968	0 09285462849860
ч	3 08455540943244	-2 29187547942124	0 34880024416584
C	1 02600620605073	_3 32000923227772	-0 12716545165855
	4.92009020003073	-3.32909023227772	-0.12/10343103033
п	4.4//99/5/00301/	-4.52190154951540	-0.03430233432009
C	-4.1426/4/18/4863	2.55/0020220010/	-1.44945538028453
Н	-3.3/2254122363/2	2.77224318582899	-2.196/141896/20/
С	6.83262218/43502	-1.93064662872786	-0.5/2/942/143468
H	/.88/41/67212336	-1.81583926470500	-0.83594575486664
С	-4.78534917520604	1.62046487808554	0.67506331396902
Н	-4.51784212243415	1.11581617546125	1.60933424557826
С	-5.45562479438650	2.97323873714943	-1.66166740837883
Н	-5.71124901697258	3.51236271974090	-2.57709116292634
С	-6.09963700221226	2.03553555301709	0.46549206821045
Н	-6.86085877238366	1.84253502029098	1.22577084251368
С	-6.43764288830645	2.70908062314445	-0.70736457358154

Н	-7.46632185072040	3.03878659307493	-0.87317436524359
С	-2.14760186698903	-0.01492115513562	-2.05714375387555
Н	-3.04216185427526	0.48107447391304	-2.45857722880525
Η	-2.17253205091250	-1.05751754990073	-2.39936844699340
Ν	-1.03828709545688	-2.54229108279200	-0.68554255021456
С	-2.34551049492811	-2.40899166881767	-0.45753593718640
С	-2.76622977438012	-4.63734182128968	-1.21396541468201
Н	-3.45041602450751	-5.46240637922009	-1.42673097987617
С	-1.40262716541938	-4.76923997811834	-1.45476427164597
Н	-0.98442566065283	-5.69280223472289	-1.85901880195848
С	-3.25425294631161	-3.43266793121282	-0.70582446129666
Н	-4.32018309739420	-3.28711729692179	-0.51743283471344
С	-0.57073233190471	-3.68339423486920	-1.17567998143102
Н	0.50770608813524	-3.72412228047285	-1.35645639183609
0	2.02325918102021	-1.88011004244141	-2.52118189997566
0	2.75403758980886	-0.95425886665732	-2.66513561124882

Table S12. Optimized coordinates of transition state ⁴ TS1			
Cu	-0.20703090352162	-0.30543919253931	-0.95235422961038
0	1.71984897095107	-0.64936731074498	-0.67115959153757
0	0.53052020262202	1.76207159135654	-0.23299006336775
Ν	-2.27524698623945	-0.00339591398007	-0.91395375569284
0	-0.36504704260871	0.16669527090536	-2.81890337086495
Ν	-0.64707922850642	-0.82273324973934	1.05976858672576
0	4.56017207162037	1.37889297476163	0.15675952493701
С	1.77445499267754	1.66558617273973	-0.20976891383564
С	2.41823328870370	0.38187504986080	-0.38029379553672
С	0.16683931308644	-0.83517300776102	2.11046060412627
Н	1.21553382748325	-0.60096358882447	1.90498224929694
С	2.64863030818488	2.82331115048044	-0.02732512934915
0	-1.85619041359810	0.41657563427364	-4.47214557957362
С	-1.55029910134813	0.22316667211447	-3.31428422080076
С	4.02511860757838	2.62401659458757	0.10457286314418
С	-2.40057892327912	1.34916497181271	-0.31881328371692
Н	-1.88375320426361	2.02325670558568	-1.01574631963210
Н	-1.80422600593408	1.39075619884505	0.60255190542499
С	3.87163779097929	0.28011813578136	-0.25759465953669
С	-1.94354103001606	-1.11262467281486	1.21063121847954
С	2.14119486072329	4.13068536807337	-0.00034883251002
Н	1.06110751868384	4.25579964272048	-0.09843620425353
С	-2.71742482410097	-1.13785814287114	-0.09475973221625
Н	-3.80437889337433	-1.13089274128208	0.09717475696705
С	5.64849847642031	-3.32988481871828	1.24508288399411
Н	6.10540171773245	-4.24300750504754	1.63712462731659
С	-1.64657423534571	-1.43332513463552	3.55930336155963
Н	-2.04716030338199	-1.67963711932118	4.54579901318664
С	4.48177242893571	-0.97742066701349	0.25811927185485
С	-2.48732070845320	-1.43519025683896	2.44740142909999
Н	-3.54692632268638	-1.68518167892415	2.53297487045931
С	4.89797221223273	3.70616969220970	0.22849349432727
Н	5.96809903740348	3.50991054523986	0.31660027044502
С	-3.79735014543308	1.84418723800441	-0.03673392052089
С	4.37856207878005	4.99348516937649	0.23111314477614
Н	5.05744220981215	5.84437887534819	0.31947622135888

С	-0.29820163517687	-1.13168017445686	3.39099959215981
Н	0.39021985917444	-1.12614694807107	4.23647124112618
С	2.99724925457813	5.21156032506092	0.12343414848690
Н	2.59691723238474	6.22794209527900	0.13120869077373
С	5.51742370493048	-0.91827635483491	1.20118780027549
Н	5.87099098376832	0.05182073472181	1.55381861547210
С	4.04249438742110	-2.22955389911334	-0.19600067820396
Н	3.23932789469281	-2.27556950911451	-0.92643992392896
С	4.62846473552578	-3.39426912542661	0.29573108294735
Н	4.27156823106241	-4.35841256734358	-0.07874688409164
С	-4.42765913054960	2.74796056175586	-0.89851489083054
Н	-3.91607579383950	3.06452245333095	-1.81190044439512
С	6.09107712938154	-2.08602906687511	1.69729702522152
Н	6.89232543552887	-2.02150127591146	2.43734011405562
С	-4.45495414996418	1.47176766957287	1.14167647740217
Η	-3.95452346835921	0.80111262193287	1.84584947940810
С	-5.67528618232434	3.28449738127214	-0.57910013287091
Н	-6.14248684787121	4.00714191464437	-1.25194991196670
С	-5.71107397048799	1.98552830071170	1.45372361367125
Н	-6.20850050997405	1.67792475099383	2.37702478516439
С	-6.31678813580322	2.90776846203625	0.60006299041307
Н	-7.28306351023179	3.34493712792010	0.86551024712214
С	-2.71213584833928	-0.03099410913895	-2.31875098849173
Н	-3.51428040383611	0.69697336168140	-2.50341335758943
Н	-3.13497792345819	-1.01371908857411	-2.56846158208656
Ν	-1.10996234867770	-2.44828622054660	-1.32482071324450
С	-2.31747751665489	-2.45651474785860	-0.76982767066109
С	-2.59163183550944	-4.76925615612042	-1.31320023932164
Н	-3.17634073341962	-5.69177047064446	-1.28935749542226
С	-1.34370116135340	-4.73750929608446	-1.92862426058913
Н	-0.92197036471212	-5.61810433108194	-2.41683100199249
С	-3.10102917404503	-3.60632139183827	-0.73343919560260
Η	-4.08651210621840	-3.59523130287527	-0.26353493016710
С	-0.63190302662574	-3.53895046367553	-1.90927914931289
Н	0.35358389159798	-3.44111617124339	-2.37491995843931
0	4.06203166513061	-0.69059139902534	-2.65299944428543
0	4.38594972973472	0.31033765591962	-1.99400174513017

Table S13. Optimized coordinates of intermediate ⁴I1

-0.15195238726899	-0.19979769165827	-0.92800727512246
1.80355117925599	-0.54570746292801	-0.83299707004425
0.63015286959671	1.85946059470794	-0.26386065338331
-2.22497345176867	-0.00660355171883	-0.87515417709297
-0.36261104289687	0.17913089213011	-2.80070320419082
-0.49626298845515	-0.51733581173632	1.12854265175696
4.57515150987412	1.24592066709899	0.45836805015941
1.87701775587324	1.73095777778011	-0.21733968465525
2.49491108558049	0.47230437912993	-0.52151135829549
0.36043784961692	-0.37694847841349	2.13558697812245
1.39296304171029	-0.13906154099005	1.86471952950549
2.77084960899634	2.82377105070868	0.19997176104485
-1.91234329947507	0.53621635266183	-4.37897046108172
-1.56387740578629	0.22038623774373	-3.26118480245438
4.09800093422484	2.52506312738759	0.52975464580789
-2.47281103203410	1.39870283992845	-0.46109143810025
	-0.15195238726899 1.80355117925599 0.63015286959671 -2.22497345176867 -0.36261104289687 -0.49626298845515 4.57515150987412 1.87701775587324 2.49491108558049 0.36043784961692 1.39296304171029 2.77084960899634 -1.91234329947507 -1.56387740578629 4.09800093422484 -2.47281103203410	-0.15195238726899-0.199797691658271.80355117925599-0.545707462928010.630152869596711.85946059470794-2.22497345176867-0.00660355171883-0.362611042896870.17913089213011-0.49626298845515-0.517335811736324.575151509874121.245920667098991.877017755873241.730957777780112.494911085580490.472304379129930.36043784961692-0.376948478413491.39296304171029-0.139061540990052.770849608996342.82377105070868-1.912343299475070.536216352661830.220386237743732.52506312738759-2.472811032034101.39870283992845

Н	-1.98333906718122	2.02864579616558	-1.21757934247086
Н	-1.92680640070504	1.58542875050725	0.47387681084456
С	4.00992032115664	0.37354695877167	-0.45665484335377
С	-1.77916696333577	-0.81011107290993	1.36901536341719
С	2.31684594379354	4.14021398433453	0.34259697533441
Н	1.27551746452706	4.34867014659199	0.08747375231896
C	-2 61310443949270	-1 02254861262495	0 11337162660749
н	-3 68911003057655	-0 98719222430974	0 35617704429717
C	5 37566603878205	-3 63360208760996	0 34208743908389
	5 71921027605201	4 65100614711544	0.54200745900509
п	1 27077574542524	-4.03100014/11344	0.04301037393030
C T	-1.3/0//5/4543534	-0.8291/2308/3246	3.72518394578699
H	-1./181685/5388/3	-0.94858801123353	4./5421/12155531
С	4.50525709355569	-1.02961876722806	-0.1/95039/954436
С	-2.26149409746852	-0.97670890625176	2.66212279086391
Н	-3.31367360309930	-1.21600213495253	2.83034285110779
С	4.96144788001499	3.51195237398729	0.99870815842089
Н	5.98921292255532	3.23946954557262	1.24516512319727
С	-3.92930563838779	1.77104519602602	-0.30935255448354
С	4.49360554124826	4.81574962842482	1.12998104704296
Н	5.17049909694431	5.59504670570829	1.48890744587121
С	-0.03808096921399	-0.52722980455126	3.46138106876713
Н	0.68785270961391	-0.40453113531886	4.26649237222878
С	3.17210402443400	5.13463646981092	0.79955312232264
Н	2.81488868503435	6.16177402861005	0.90180122710775
С	5.17047970675181	-1.32181616341398	1.01183609384415
Н	5.35300136377274	-0.52327314909414	1.73228734684719
С	4.27434394510651	-2.04660821497421	-1.11256730185768
H	3.74985465084319	-1.81429115220111	-2.04039139688854
С	4.71329465609794	-3.34082228520497	-0.85080917166214
H	4 53653044692000	-4.12905327372428	-1.58702429223670
С	-4 65248584527090	2 29353177841920	-1.38881277209688
H	-4 14676626672429	2 46253189634940	-2.34450483106085
C	5 60285589979014	-2 62224850519709	1 27197344818675
н	6 12617067480704	-2 84179407022659	2 20608407529707
C	-4 58426315710123	1 60111528124466	0 91647326600764
с u	-1 02011031717674	1 23591508064077	1 78079859856558
C II	-6 00305070101852	2 60000007327824	-1 25200835820444
	6 55214085854740	2.00990097527024	2 10520602127109
п	-0.55214085854740	1.01640240640604	-2.1055960215/106
U	-3.93483240363361	1.91040349040024	1.03399691393807
п	-6.42947954218885	1.78298150975209	2.02148842382338
C	-6.64862372793597	2.41606397071495	-0.03237628540643
H	-7.70680524724930	2.66/2/554/31855	0.07435775818423
C	-2.64933190457427	-0.25062593225660	-2.262/168/069186
H	-3.61304833/54015	0.22328046016174	-2.49321324612691
H	-2.77765223284385	-1.32819893504314	-2.42884506429177
Ν	-1.01783762513466	-2.5183/140319551	-0.90235514407931
С	-2.24940435953533	-2.41346955872295	-0.40324262213892
С	-2.66524936139628	-4.73663945172829	-0.78126134198869
Н	-3.31875463716157	-5.61129401469819	-0.73732193809147
С	-1.38036377133399	-4.83966948376309	-1.30417062748662
Н	-0.99512768338761	-5.78947108653939	-1.67931402404961
С	-3.11563306197177	-3.49890242892860	-0.31983090223354
Н	-4.12243228403176	-3.37713499696450	0.08568075187367
С	-0.58715334315702	-3.69173288833872	-1.34692829160304
Н	0.42975644764286	-3.71032397058559	-1.75119851745812
0	3.94206659958299	0.45283332158274	-2.78862389738882
0	4.58588348314887	0.85148034023936	-1.74846619441261

Table	S14. Optimized coordinate	es of the minimum energy cro	ossing point (MECP)
Cu	-0.15172470081382	-0.24348763029064	-0.77835526525677
0	1.80236877488369	-0.60062023292565	-0.65333535467151
0	0.61998449681023	1.79746714555692	-0.06317658641480
Ν	-2.22469425770299	-0.03193033920139	-0.80793893380153
0	-0.28446964706686	0.17542021419202	-2.65113033403017
Ν	-0.58158367328641	-0.58173051729661	1.25477582860745
0	4.61600579760510	1.26291515195154	0.42098194017850
С	1.87016863671960	1.68857229825531	-0.08057185880794
С	2.49151017571642	0.43570557574429	-0.40262293092472
С	0.23529935275969	-0.44319072823575	2.29416877368081
Н	1.27946047926646	-0.21587455534436	2.06157718040990
С	2.76651964253804	2.80186233475169	0.27027810287963
0	-1.76973954289901	0.58693737915500	-4.27761641630808
С	-1.46666197133793	0.23579873199455	-3.15709230377380
С	4.11791159843854	2.53237820559908	0.51715348748448
С	-2.47146441831685	1.37283450533899	-0.39131944231142
Н	-1.91811137179357	2.00219273837473	-1.10284940062269
Н	-1.98634208252782	1.53501805593349	0.58103659584618
С	4.00925144257735	0.37939991890258	-0.45591084515264
С	-1.87705452131289	-0.85604589179925	1.44368299247756
С	2.29589444274469	4.11046707833107	0.43009683198704
Н	1.23692173007588	4.29656117203869	0.23837762828028
С	-2.66244403758738	-1.05267366642086	0.15446048512729
Н	-3.74719881504854	-1.00985639994519	0.35380945285826
С	5.58854402421339	-3.58161862703446	0.15171315807956
Н	5.98884297572277	-4.58756544663704	0.30262628712635
С	-1.56479196515024	-0.86413436342542	3.81433625542190
Н	-1.95651519371374	-0.96992944666031	4.82880906482851
С	4.57291101766951	-1.00814589549734	-0.24188320946686
С	-2.41340450348892	-1.00856656847440	2.71678961894884
Н	-3.47487410423496	-1.23128895149324	2.84462941700469
С	4.98928307818901	3.54034873533552	0.92159173709542
Н	6.03650954280373	3.29148333750190	1.10210331133122
С	-3.92554924163536	1.77815404817945	-0.33487474020769
С	4.50385183792450	4.83549896099198	1.07325676535625
Н	5.18635474443450	5.63127701445550	1.38165389080804
С	-0.21896457054072	-0.57927235388811	3.60369872199846
Н	0.47394107378138	-0.45596376733104	4.43729171776811
С	3.15790565666044	5.12519220516915	0.82512675925741
Н	2.78691559735333	6.14584206727283	0.94194108673651
С	5.36337550630538	-1.28728612436593	0.87331724881707
Н	5.58541673666384	-0.49123412463650	1.58524899433046
С	4.28833197633659	-2.02310438535097	-1.16241195636704
Н	3.66745124431975	-1.79992716456186	-2.03113466660762
С	4.79963494229881	-3.30195069115176	-0.96480820154633
Н	4.58077856625089	-4.08786546404055	-1.69212657769939
С	-4.55243955159816	2.34227551360973	-1.45288511557544
Н	-3.97282016397121	2.51158267041157	-2.36570264680245
С	5.86891833411145	-2.57246524848308	1.06926189692084
Н	6.49121407555583	-2.78216304681669	1.94295041985215
С	-4.67329733043173	1.60271682717054	0.83549556528771
Н	-4.18684660847279	1.20512978718468	1.73219902142773
С	-5.89980798299053	2.69499883398150	-1.41005449192729
Н	-6.37219010313814	3.13419821083587	-2.29197226424653
С	-6.02108919753157	1.95528894122470	0.88186147685163
Н	-6.58875646233811	1.82007981313978	1.80596959636008
С	-6.63858983267915	2.49670995290365	-0.24442570598536

-7.69429572900253	2.77678446255046	-0.20961322626760
-2.59114271246554	-0.25717042212454	-2.21459764680625
-3.54659345908352	0.21604377610489	-2.47843117629542
-2.70542425407260	-1.33265342836011	-2.40169829389381
-1.04476932035018	-2.54770568870845	-0.82643941900441
-2.28948843993158	-2.44150999719949	-0.36141312130411
-2.70549450328769	-4.75786238957839	-0.77835071273494
-3.36348286477710	-5.63010356663544	-0.76270124492135
-1.40765417972652	-4.86148665895273	-1.26805373549302
-1.01682269048809	-5.80812596339384	-1.64546480531874
-3.16247500281222	-3.52337716965758	-0.31448391569187
-4.17942158275685	-3.40151597474774	0.06459677303841
-0.60752657019289	-3.71771621592280	-1.27329745255368
0.42048657134939	-3.73702939409703	-1.64824808720970
3.75809738953570	0.47722668962073	-2.77588693640510
4.46595069894092	0.88978714692210	-1.78399006205666
	-7.69429572900253 -2.59114271246554 -3.54659345908352 -2.70542425407260 -1.04476932035018 -2.28948843993158 -2.70549450328769 -3.36348286477710 -1.40765417972652 -1.01682269048809 -3.16247500281222 -4.17942158275685 -0.60752657019289 0.42048657134939 3.75809738953570 4.46595069894092	-7.69429572900253 2.77678446255046 -2.59114271246554 -0.25717042212454 -3.54659345908352 -0.25717042212454 -3.54659345908352 -1.33265342836011 -1.04476932035018 -2.54770568870845 -2.28948843993158 -2.44150999719949 -2.70549450328769 -4.75786238957839 -3.36348286477710 -5.63010356663544 -1.40765417972652 -4.86148665895273 -1.01682269048809 -5.80812596339384 -3.16247500281222 -3.52337716965758 -4.17942158275685 -3.40151597474774 -0.60752657019289 -3.73702939409703 0.42048657134939 3.73702939409703 0.47722668962073 0.88978714692210

Table S15. Optimized coordinates of transition state ²TS2

Cu	-0.17217596831368	0.04605732907498	-0.95867338330394
0	1.77505963099799	-0.51717977790720	-1.05090553484997
0	0.91124493788437	2.01633282138591	-0.51164827670362
Ν	-2.25465032101697	0.03555763977466	-0.90227120990496
0	-0.43240654554917	0.10359692026730	-2.86165475590286
Ν	-0.59364246429561	0.30468512897976	1.21605223813299
0	4.52022605317588	0.53505069026344	0.69315893976432
С	2.09943467130348	1.68769652816647	-0.29919926999535
С	2.57296925518409	0.37928253235357	-0.71710791587904
С	0.11168962777794	0.93813127943489	2.15178580485781
Н	1.13603869633882	1.21344790243567	1.89674584075129
С	2.98687122003764	2.41242267807289	0.62560830699350
0	-2.03524279881239	-0.03399128144664	-4.42315519035404
С	-1.62873106596744	-0.12616545605000	-3.28445568686776
С	4.12609687322770	1.76529635680321	1.13744211364289
С	-2.73543969923563	1.44354637564014	-0.87066875497184
Н	-2.34099498272358	1.91971098924401	-1.77945296609850
Н	-2.25664384457998	1.95146029796550	-0.02269022693463
С	4.08843126047714	0.16746320083017	-0.58595221777420
С	-1.85924886820303	-0.04076858014989	1.47660370619506
С	2.59048457506816	3.63256863927411	1.18590677629155
Н	1.69111522259114	4.09921083989513	0.77750978332547
С	-2.55949595423750	-0.73101276588249	0.31688834185422
Η	-3.64417431537163	-0.79232531213900	0.50904833545577
С	5.56190330629830	-3.70874554084827	-1.70571810541900
Н	5.96575437283606	-4.67331971334985	-2.02667752193442
С	-1.73383264615704	0.89227370552696	3.67599230792865
Η	-2.19125728680933	1.14318840992057	4.63660426154431
С	4.57836176874352	-1.21673437980988	-0.92321289770676
С	-2.46348924712252	0.20917415776045	2.70463003918824
Н	-3.49421760065058	-0.10405046873056	2.88522166311001
С	4.84507117754587	2.32698364407359	2.19241020632144
Н	5.71344849828535	1.79056354723236	2.58005222394238
С	-4.23938938640096	1.58568009273685	-0.79633952423214
С	4.42719232971396	3.53450223911221	2.74161442310931
Н	4.99208633094584	3.97163779908376	3.56876621448464
С	-0.42420880576418	1.26589165352742	3.39504873946875
Η	0.18328643226704	1.81081812473842	4.11909523031954

С	3.29643735051786	4.19187814440330	2.24157353472166
Н	2.95992863224946	5.12991761132464	2.69007671902042
С	5.48287696310946	-1.89625451686953	-0.10856044956628
Н	5.80922409023345	-1.44272569308872	0.82833085301133
С	4.15269959368652	-1.79175401638666	-2.12554877939178
Н	3.44883429673821	-1.25186598986379	-2.76094117367537
С	4.63450936189665	-3.03949602026855	-2.50674863043287
Н	4.28201893028119	-3.48977224188571	-3.43853301800116
С	-5.01505836901596	1.63552361420810	-1.96117738774205
Н	-4.52233715491085	1.64898969081213	-2.93809753632651
С	5.98314708093011	-3.13627253842680	-0.50770278131248
Н	6.70339473815574	-3.65894955287028	0.12664586408170
С	-4.88690535714487	1.63433900118489	0.44408387106692
Н	-4.28780740052209	1.65936568887073	1.35776389500667
С	-6.40581208652247	1.67118035554000	-1.88282052844075
Н	-6.99975997915290	1.70132161930287	-2.79893829537183
С	-6.27700964336166	1.66912308477977	0.52596157588763
Н	-6.77052418464693	1.70438679825201	1.50086439693476
С	-7.03855875742034	1.67412945174459	-0.64092574303650
Н	-8.12953769157051	1.69989960084660	-0.57980078866789
С	-2.59567709162241	-0.60900406176677	-2.18205390214378
Н	-3.63817332527795	-0.42331667096488	-2.47503574449562
Η	-2.45721921699710	-1.69508244020575	-2.09606843972857
Ν	-0.78325587152070	-2.22197539733374	-0.34793375861670
С	-1.97937169775951	-2.13482973351947	0.22897373287810
С	-1.99849991085046	-4.47916570425923	0.68704527688600
Н	-2.47947563676349	-5.36605090302907	1.10741297252362
С	-0.76461938353485	-4.57074772175865	0.05087136971502
Н	-0.25206559023567	-5.52737698422445	-0.06607453363080
С	-2.62330705960426	-3.23649811607909	0.78077891902866
Н	-3.59473139703324	-3.12142661261491	1.26721128153180
С	-0.18409857111891	-3.40258945552414	-0.44356359958802
Н	0.79426853700382	-3.40198882713565	-0.93352333354046
0	3.67448990156911	1.49011316990691	-2.33385805610575
0	4.64445146072655	1.14903711963868	-1.47608984032827

Table	Table S16. Optimized coordinates of intermediate ² I2					
Cu	-0.15312883844894	-0.06202747389305	-0.99691282698326			
0	1.72191826536025	-0.44103559054363	-1.04459167896955			
0	0.87899775685899	2.10036198225399	-0.44920126759073			
Ν	-2.22626890800114	0.03167671145928	-0.86237463591335			
0	-0.52987621415652	0.31490872321128	-2.87496041336078			
Ν	-0.56050868840771	0.21420973207315	1.27419322615754			
0	4.64703935677612	0.75394141715379	0.41086866669845			
С	2.04680994265043	1.78239544172634	-0.30570058986087			
С	2.57479314608040	0.53870362366972	-1.02791072654797			
С	0.15641379058304	0.79332804028365	2.23236833495954			
Н	1.19451851163288	1.03336266797818	1.99240489111874			
С	2.94777111279021	2.46853627817091	0.63056133272099			
0	-2.20580983858752	0.23428995060523	-4.36772726174189			
С	-1.72699238484680	0.05651383317500	-3.26458758742870			
С	4.16157983898313	1.86604346366257	0.99457243731046			
С	-2.66529160627991	1.45091360551122	-0.78520629470063			
Н	-2.20459566437861	1.95822285773752	-1.64341415731178			
Н	-2.22421770585607	1.90211989408042	0.11262096691351			

С	4.08210629745377	0.25785184198364	-0.76785898033574
С	-1.83558423468531	-0.10354441377174	1.51604995779240
С	2.50567380510011	3.60827385194207	1.32031125822777
Н	1.55386353966343	4.04167575521722	1.00346145572491
С	-2.53980003706983	-0.75848650690527	0.33572192561237
н	-3 62521109104556	-0.82076838760366	0 52603950479755
C	5 48803100726842	-3 74390787706958	-1 48354409134542
н	5 87722982341455	-4 74175160598419	-1 70701168476194
C	-1 7024051740409	0 76761561032398	3 74027713130315
ц	-2 16052473962655	1 00533739737986	4 70389079416425
C	4 54961530194019	-1 16496292943172	
C		-1.10400202045172	2 7//58300123/10
	2 44515275071707	0.15430930001009	2.74450590125419
п	-3.4000131/39900/	-0.13343432240302	2.90882395520941
	4.90114/310/3044	2.38397690818936	2.0632/42634/764
п	5.82509276494510	1.07999083145968	2.35285135130506
C	-4.1656/462091680	1.62/208/3041231	-0./935663/80/213
C	4.43806492397152	3.50434995165543	2./43291/545//45
н	5.02246459574710	3.90282490116693	3.5/652358149159
C	-0.37752496520739	1.10495436069742	3.4818524/3/6/69
H	0.2400/52486/140	1.60661934831848	4.22828523765135
С	3.23845153134//0	4.13151192507991	2.3/13414053086/
Н	2.8812311/0533/3	5.00942095253052	2.91355008079763
С	5.42860514893619	-1.78438953354343	-0.07006691142750
Н	5.76231832520961	-1.24948636252439	0.81967189622374
С	4.12400868340705	-1.84787672733189	-2.10421112494011
Н	3.43219233848727	-1.35667402391060	-2.79010421633728
С	4.58417232183688	-3.13566452420813	-2.35816350130393
Н	4.23941911596535	-3.66463175336614	-3.25028302700687
С	-4.86391333989451	1.69988297126046	-2.00660163321811
Н	-4.30690854622465	1.69757714047388	-2.94901583516776
С	5.90290619316584	-3.07108356725892	-0.33653772236593
Н	6.60389453764025	-3.54426337173575	0.35562599563987
С	-4.88642546664020	1.67070761706974	0.40525666439014
Н	-4.34489421575859	1.67061939536714	1.35517142178882
С	-6.25633450667014	1.74968781864214	-2.01553305917160
Н	-6.79274679730501	1.78938046765772	-2.96643906835687
С	-6.27908415821828	1.72612418133132	0.39860370698005
Н	-6.83209050331300	1.75687466133627	1.34080114290601
С	-6.96508257331071	1.75040769112002	-0.81439091581468
Н	-8.05729626305560	1.78652723062181	-0.82431668824533
С	-2.60891015423576	-0.56114286593994	-2.15458884155897
Н	-3.67457617159999	-0.42050786477191	-2.38047760546711
Η	-2.40414565410408	-1.64013179920198	-2.13601605449641
Ν	-0.77060594870430	-2.21754612511182	-0.40174340497364
С	-1.95322838408668	-2.15681632722088	0.20894180895273
С	-1.91116215149317	-4.50510253373303	0.64515517475296
Н	-2.36473729816559	-5.40510235382441	1.06848697610019
С	-0.68901554676737	-4.56532840469559	-0.01850076609403
Н	-0.15704782041999	-5.50931601126030	-0.15044502833149
С	-2.56016219560734	-3.27667106491521	0.76548286361475
Н	-3.52021736821989	-3.18616263264223	1.27841864383339
С	-0.14389231413551	-3.38229926998494	-0.51845133988867
Н	0.82536494386043	-3.35024621453308	-1.02516423166504
0	3.02474473886577	1.09891119854918	-2.33375023248185
0	4.40124774978553	1.08212206897141	-1.87856321225133

Table	S17. Optimized coordinate	es of transition state ² TS3	
Cu	-0.19238948453682	0.17621586773731	-0.66024275158889
0	1.75034055541677	-0.63750118874317	-0.66022505511530
0	1.00145499169723	1.99311504936719	-0.32322883771986
Ν	-2.27969267563455	0.06221403577399	-0.77229275875660
0	-0.29940614176828	0.16170510753265	-2.57426618573068
N	-0 75491806181088	0 48193509021403	1 38984422355438
0	4 68564703701835	0 48279005194177	0 59084484187176
C	2 20001530854703	1 65937178420707	-0 22710044272062
C	2 58344632973077	0 26598813475786	-0 57839104074677
C	-0 10213490696103	1 14466641206809	2 34310634237620
	-0.10213409000193	1 54116422104144	2.34310034237020
н	0.8/906366150/29	1.54116433184144	2.0/338/05332358
C	3.15455918434628	2.36159377206895	0.668/9293300845
0	-1.//8159410285/1	-0.006594/2865/09	-4.251/9610530495
С	-1.45423896064384	-0.09814102109924	-3.08671068700533
С	4.30515100410698	1.68411395720061	1.10643293002732
С	-2.80235469000535	1.45174655339777	-0.81892609113418
Н	-2.33132686401674	1.92718622628452	-1.69132901169721
Н	-2.43518737478976	1.99183635793443	0.06437879294047
С	4.11106133590426	0.12328979827009	-0.64862362843699
С	-1.99006135266280	0.02230285407061	1.62605129756959
С	2.79762353638345	3.57096217295834	1.26710902010889
Н	1.89043177620531	4.05936417188728	0.90323009033453
С	-2.63304183953562	-0.68738816968942	0.44393869746114
Н	-3.72392983405999	-0.75886719873452	0.59216537948409
С	5.60288033067075	-3.63953474833129	-2.07164382271770
Н	6.00693918273440	-4.57202823554323	-2.47580699409490
С	-1.92457314337992	0.85297378890013	3.86861501388347
Н	-2.39059416677528	1.00664060347198	4.84510496693560
С	4.62827696932505	-1.22024402753033	-1.08446411145973
С	-2.60759287429793	0.17035026321351	2.86308793774433
Н	-3.61070585200761	-0.22993579152993	3.02613407529709
С	5.07272887690868	2.21259078332386	2.14658791979304
н	5 95253423320812	1 66107267181736	2 48339457494527
C	-4 30688854074962	1 55191496411470	-0 90965242144880
C	4 68967225472460	3 40930692497875	2 74526144478974
н	5 29070825414001	3 81385981650316	3 56360583244489
C	-0 65443418496988	1 35603504607513	3 60428950812597
н	-0 09415031056322	1 91336836127070	4 35580215700406
C	3 55221840983305	4 09714246980004	2 30902216038518
Ч	3 24875082416152	5 02905107523974	2 79199447016185
C	5 63731829097877		-0 40031993627906
Ч	6 04621576047931		0.51351895980811
C	1 08629559982035	-1 76851995822833	-2 25260608739343
с ц	3 20327001506710	-1 23/1012/639771	-2 79116300974472
C	1 56765677085685		
	4.30703077003093	-2.97922405005994	-2.73011004039743
п	4.13310304372342	1 50201027544161	
	-4.945/1/00120402	1 60070642644064	-2.13392194399279
н	-4.34346113313614	1.59279645544854	-3.06937999393506
	0.13220933032009		-0.90232722380357
H	6.93464506/56166	-3.61800339060253	-0.3/2444//596052
C	-5.088228285024/1	1.5914680941/380	0.2515142439040/
H	-4.59/02982926/25	1.624452101624/4	1.22886145130426
C	-0.33/16232284/16	1.60364822491863	-2.23621813/26/90
H	-6.82/43254204501	1.622/34//916099	-3.212549/393/3/7
C	-6.4/935810995//3	1.609/5963993643	0.1/3/2519681650
H	-/.0//9631/792306	1.63843202458086	1.08738248593120
C	-/.104/41082/32/9	1.6U591/U1/16558	-1.0/220824129167

Н	-8.19547662288061	1.62077257704310	-1.13841454036471
С	-2.48025531023688	-0.62136778912697	-2.05792575736432
Η	-3.50519636933327	-0.50865695187086	-2.43740345848893
Н	-2.27455003790901	-1.69345963603682	-1.93771046098116
Ν	-0.74806467775528	-2.10930826753826	0.02729306297647
С	-2.02798714708167	-2.08317462711379	0.39106164424162
С	-2.05896775606064	-4.45499212703510	0.66204918592705
Н	-2.58246877956518	-5.38056974807194	0.91359626932089
С	-0.72401031053990	-4.47734693662292	0.27158645638755
Н	-0.17059431039889	-5.41463779173963	0.19213055318997
С	-2.72961982043215	-3.23290064621532	0.73198792364708
Н	-3.77438170494103	-3.17308877782862	1.04558933137923
С	-0.10048748360044	-3.26512943472236	-0.03321822818775
Η	0.94505535553052	-3.20600980456360	-0.35379498040120
0	3.00735276752397	1.47925225961493	-1.93211713112705
0	4.35216538981105	1.12516753276403	-1.59933111643720

Table S18. Optimized coordinates of intermediate ²I3

Cu	-0.24819352460616	0.44021677297269	-0.42427025638325
0	2.05155756423586	-0.92376874278098	-0.04574691540188
0	1.10704544735019	1.79676688779716	-0.17902480790952
Ν	-2.34173540835298	0.15287035776331	-0.80819511869464
0	0.00503868874400	-0.08872220625242	-2.22880795029045
Ν	-1.01832954300425	0.83826857923516	1.43186559867535
0	4.94671139357828	0.37335918417270	0.41651270828451
С	2.38213861383208	1.49133842348894	-0.27013182236321
С	2.74498344030301	0.01316347930179	-0.31369877390097
С	-0.41285890395514	1.53580808945390	2.38981512434918
Н	0.57064094799042	1.93059704979040	2.11998747168387
С	3.26688889449871	2.06265932736549	0.84590795419646
0	-0.94312479275053	-1.33734129070368	-3.81755734599174
С	-0.97653135631487	-0.71610104226101	-2.77747744496816
С	4.48780276714880	1.44222228382507	1.14211425766176
С	-2.92613266886740	1.49706707795039	-1.02401746139134
Н	-2.46332069928937	1.89163935858217	-1.93960268993514
Η	-2.60237277350237	2.15783320933450	-0.20668641190499
С	4.20430466019182	0.06631823801511	-0.75909853473495
С	-2.23504104763901	0.31753136931243	1.62152556055442
С	2.85508470814381	3.15926334569567	1.59557204119646
Η	1.91407064398837	3.63413971386294	1.30609287588178
С	-2.75618357852848	-0.49857091473032	0.44339896038822
Η	-3.85015597187725	-0.61705914775695	0.52250891190546
С	5.72535913981057	-3.42638327970683	-2.72738349652027
Η	6.11396973912772	-4.30631717571204	-3.24687664070117
С	-2.27732106226265	1.18987979693509	3.84925287705519
Η	-2.77925472208442	1.33318083904914	4.80913477082298
С	4.76115876509016	-1.15958468756738	-1.42442311972873
С	-2.90027063630726	0.46195335943334	2.83465883610083
Η	-3.88651195264093	0.01525935363160	2.97958486911913
С	5.25699851626116	1.88714076840590	2.21676056481138
Η	6.19242078950191	1.37334269898849	2.44714449010861
С	-4.43590088984019	1.52742758526175	-1.12790003615367
С	4.81580525066733	2.97048507346840	2.97661030154412
Н	5.42452831589447	3.32095252569188	3.81367750920256
С	-1.01840691170258	1.74177579021163	3.62637875004354
Н	-0.50698020435426	2.32218965051921	4.39501606004142

С	3.61868398982693	3.61893903870092	2.66592273937203
Н	3.28035181603838	4.47393240543843	3.25584135853672
С	5.89530988003139	-1.80906651984207	-0.94061644733556
Н	6.39708181799934	-1.42092768973652	-0.05357387884480
С	4.09844141290335	-1.64938459771863	-2.55418869397076
Н	3.20441302029481	-1.14005329412280	-2.92505289761146
С	4.57988136242541	-2.78391660226453	-3.20092217197946
Н	4.05505182124661	-3.17206439670852	-4.07725256976325
С	-5.08280947324982	1.47839251324373	-2.36818806685364
Н	-4.49202198588496	1.47146569946703	-3.28836119916017
С	6.37595318330272	-2.94317523991316	-1.59409666036434
Н	7.26286240680021	-3.45299590409574	-1.20922349306125
С	-5.21933298214952	1.59384319671446	0.03233774585270
Н	-4.72932206449111	1.69417590193559	1.00540410367582
С	-6.47498193935600	1.45853661711192	-2.44488947618175
Н	-6.96779574548837	1.42353444287184	-3.41945341340010
С	-6.60988931231448	1.55831248772079	-0.03880817366191
Н	-7.20513075680991	1.60345896406158	0.87644833946403
С	-7.24002075832868	1.48591272464201	-1.28050834605543
Н	-8.33084493759257	1.46431715266382	-1.34252081908805
С	-2.34380903322004	-0.67092450233458	-2.03363575222765
Н	-3.09451895622627	-0.30573923700832	-2.74780749838231
Н	-2.63181402915785	-1.70690145321676	-1.81114408596503
Ν	-0.80733402737234	-1.87291338427858	0.19772285641818
С	-2.08881487762823	-1.86140489116792	0.55438736111709
С	-2.04223326038239	-4.19324572059206	1.06154104826313
Н	-2.53025569404901	-5.10403354382143	1.41727310514821
С	-0.71856441740778	-4.21377269738190	0.63384574806321
Н	-0.14062168346536	-5.13927788419072	0.61970656350696
С	-2.74940551726108	-2.99167341659615	1.02101257009907
Н	-3.79290827073824	-2.93280759362525	1.33916148667113
С	-0.13237768018987	-3.01735016520207	0.21572761450537
Н	0.90648909258873	-2.95939509550475	-0.12129403903988
0	2.94972766518207	1.86831660800566	-1.55563760943507
0	4.21133929564538	1.15661237470004	-1.64286401496493

Table S19. Optimized coordinates of transition state ² TS4						
Cu	-0.31724842109239	0.38549631843977	0.27197061719522			
0	2.50690011428000	-1.06357924282924	0.38606937763923			
0	1.19368502831497	1.25841589426338	1.02066588237520			
Ν	-2.30268730357355	0.10255869589241	-0.42488503885657			
0	0.19302569400926	-0.12605559407136	-1.50225075050100			
N	-1.35700246674054	0.73862524533937	2.00464523231405			
0	5.06000535660286	0.83671963166423	-0.36175418846039			
С	2.27454366160493	1.47527192815660	0.26626374115192			
С	2.87871727084115	-0.06171500152421	-0.07400057732686			
С	-0.86272539333964	1.32468215085451	3.09193776446147			
Н	0.14421012312117	1.73778995274947	2.97102824243413			
С	3.46931413615575	2.10634309236381	0.99313191003935			
0	-0.59186511212031	-0.92149022696892	-3.43783969185306			
С	-0.72818903262945	-0.55996189680945	-2.28779248353510			
С	4.77173255374037	1.79405577724001	0.57149809629404			
С	-2.83683199299013	1.46068517180192	-0.68775685018568			
Н	-2.13573958323039	1.93651886508932	-1.39004492287905			
Н	-2.78923275300422	2.03784199230047	0.24648284636022			
С	4.00492731921676	0.27964883017625	-1.16131360177332			

С	-2.56578002914270	0.17112530743718	2.00747891259663
С	3.28805830956247	3.07020770031258	1.98312423589771
Н	2.26729299655930	3.31066786489102	2.29229356048623
С	-2.89684086195989	-0.59369503023494	0.72858203049056
H	-3.98721431052638	-0.73267975021035	0.62843812628347
С	5.32671705076804	-3.41803878570918	-2.91485151222373
H	5 67759948590557	-4 34117507552084	-3 38470092464674
C	-2 84803581024880	0 77300957104455	4 30593745293626
н	-3 43817928979820	0 76958456106844	5 22523314000872
C	A A7617A11917181	-1 03273923521531	-1 76597723200708
C	-3 35532461611616	0 17293622143479	3 15235157776932
с ц	-1 33746573097172	-0 30371466349785	3 1/701/57618367
C	5 86632065632662	2 13800126731668	1 1512903/220029
	6 96204541522002	2.43099420731000	0 70550004005222
п	0.80304341323908	2.10055204225055	0.79558084095525
C	-4.23866644616927	1.50342100289381	-1.25160935935397
C	5.66619018615362	3.40149199694952	2.138/1405425428
H	6.5263//52/23948	3.90891514586694	2.58338491556424
С	-1.58823641676855	1.36561642580054	4.2/89//66622153
Н	-1.16258658188847	1.84790595263808	5.16053662299825
С	4.3/498815304269	3./24348634///50	2.55955390183073
Η	4.21318822575165	4.48379635361389	3.32764714340762
С	5.62230203817445	-1.66202578919358	-1.28284992069710
Η	6.18231152653026	-1.20278453857422	-0.46773525912264
С	3.72691720416291	-1.60532023827363	-2.79550855000833
Н	2.81284573916332	-1.11234371510039	-3.13837673240194
С	4.16211691455986	-2.79767860413442	-3.37080159276387
Н	3.58453845341161	-3.24711528057926	-4.18198507854990
С	-4.44610840047812	1.53280090245117	-2.63627724616253
Н	-3.58477602469269	1.57172125211097	-3.30918285690170
С	6.04535203188238	-2.85814698570230	-1.85991214310396
Н	6.94253746260263	-3.35247932571441	-1.47766649302497
С	-5.35579770375875	1.50760677811117	-0.40822827588809
Н	-5.21101521395953	1.54095290087930	0.67721118285315
С	-5.73453533697367	1.52176757009306	-3.16563129506182
Н	-5.87783536029311	1.53996318587351	-4.24860959577220
С	-6.64707122742918	1.49867704651159	-0.93466268877917
Н	-7.50907553976331	1.50489123321515	-0.26398849409148
С	-6.83867271662695	1.49753434977241	-2.31571768839176
Н	-7.84821869616206	1.49152022010040	-2.73437257068625
С	-2.14673942817786	-0.67900024358967	-1.66657404426624
Н	-2.88568984568142	-0.39081133276227	-2.42376945059558
H	-2 32328723833506	-1 74501464890078	-1 47143817371061
N	-0 88144302278830	-1 89714545776009	0 84046695552473
C	-2 21324256648138	-1 95152927355451	0 87225144391022
C	-2 17481367353655	-4 33064737419553	1 06408147251332
н	-2 68933091709991	-5 29044525681628	1 15239226642613
C	-0 78678178659971	-4 27194196470715	0 99485781275218
н	-0 17938834294444	-5 17779226459474	1 01992925598601
C	-2 910/3/51067020	-3 1/5/607675/000	1 00601300172071
U U		_3 1/7110111//700	$1 0 \\ A \\ A \\ C \\ A \\ C \\ C \\ C \\ C \\ C \\ C$
п	-1.0010/122/43090	-3.02017224254014	1.04434040010208 0.0005666000617/
U U	$0 \cdot 1 \cdot 3 \cdot 3 \cdot 3 \cdot 3 \cdot 4 \cdot 2 \cdot 1 \cdot 4 \cdot 5 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5$	-3.02017324334014 -2.00200170706070	0.009000000201/4
п	0.310/30000/000/00	-2.JUZUOI/0/U00/U	0.02431300032034
0	2.11029100009048		-0.93594380061352
0	3.44929/04553102	1.081440/3895508	-2.00131498580521

Table S20. Optimized coordinates of products (^{2}P)						
Cu	-0.00366370147796	-0.60426085834486	0.20069936103943			
0	2.41815343672317	-3.41067501445924	0.30018671100144			
0	1.78411628002208	-0.41438224771043	0.98162155825211			
Ν	-1.95598193351898	-0.44653163389173	-0.49938367064924			
0	0.36879755897622	-1.22921379561780	-1.57917851694081			
Ν	-0.91005982220766	0.29406834599679	1.89637344723809			
0	3.60710477134863	3.06813535524412	-0.58574256029300			
С	2.07555629948509	0.77925348268458	0.61599910194676			
С	3.38331379700307	-2.82293540459269	0.27727082693660			
С	-0.33482903016437	0.98898442973596	2.87301026247206			
Н	0.75758157171658	0.95800512431930	2.90354039428080			
С	3.37457072684712	1.32915264640941	1.12754121622736			
0	-0.61391185848280	-1.87017590896432	-3.47805400987846			
С	-0.64432601995665	-1.52277773244092	-2.31438637502772			
С	4.02502741184787	2.42716638713958	0.54080562707768			
С	-2.12038346322090	0.94009901465969	-1.02485312032591			
Н	-1.26480351534616	1.13036682975776	-1.68910638810225			
Н	-2.01200849611146	1.64048128457000	-0.18548681665144			
С	3.11676297648664	2.47834554707079	-1.72642162388066			
С	-2.24390594132187	0.23433090217142	1.80583898928062			
С	3.94487009454400	0.74784141305986	2.26665942405963			
Н	3.44286050669654	-0.12649015608853	2.68674106450790			
С	-2.72259401470282	-0.72747799829078	0.72317026423194			
H	-3.81298283196054	-0.64335376457830	0.57752056536196			
С	4.32754845189450	-1.47763712893479	-2.85583330895428			
Н	4.63146556574644	-2.47938317427020	-3.17342490038323			
С	-2.47255864357113	1.67263286753736	3.70282514424369			
Н	-3.09423085977199	2.23045115520801	4.40629115998385			
С	3.57237252979813	1.09030443516678	-2.05948681174461			
С	-3.06827815662096	0.91645428810567	2.69086976893691			
Н	-4.15482578200709	0.85980762505525	2.59128848674063			
С	5.17677380218314	2.95301713590866	1.13198886093560			
Н	5.65344369088317	3.80569572153528	0.64483965384895			
С	-3.42388693565755	1.15936770904617	-1.75829329192504			
С	5.70503363804729	2.38206104879018	2.28320238076580			
Н	6.60094790499359	2.81312917110327	2.73718100936945			
С	-1.08531977162222	1.70424027374745	3.80475105804824			
Н	-0.58109598938279	2.27161550716175	4.58790054293764			
С	5.09694527553561	1.26080662782251	2.84980217360642			
Н	5.52558448664529	0.78326784889618	3.73388172992952			
С	4.79637988817853	0.55461221283956	-1.64030822047277			
Н	5.47021251844182	1.13635870777250	-1.00985016333190			
С	2.72977494546858	0.32633546918230	-2.87110018061870			
Н	1.76502984181458	0.73659882844022	-3.17314324297983			
С	3.10350746735200	-0.95412123881281	-3.26714592977902			
Н	2.40996913706122	-1.54830822649483	-3.86502551805518			
С	-3.46250375559097	1.11863496768055	-3.15600588591426			
Н	-2.52907944176986	1.00407339790768	-3.71572902129579			
С	5.16820840971088	-0.72711710420612	-2.03313364075617			
Н	6.11208558843531	-1.14843567701891	-1.67733055009641			
С	-4.62597096412539	1.33166752064199	-1.06174065826961			
Н	-4.60540308082806	1.43993107686741	0.02714285911440			
С	-4.67709239697525	1.18634235989587	-3.83557113402334			
Н	-4.68989830972353	1.13876185444932	-4.92725218778341			
С	-5.84421404049504	1.37885944440784	-1.73626159103310			
Н	-6.77393183881646	1.49518045047069	-1.17415164938027			
С	-5.87240815729431	1.29325220812180	-3.12746427661927			

Η	-6.82383142198801	1.32395731247186	-3.66419344465667
С	-2.01393497600235	-1.43998678341603	-1.58931981817782
Η	-2.80607852505309	-1.21003920773481	-2.31570910549225
Η	-2.22549329220452	-2.43341751168423	-1.17284938166617
Ν	-1.14448563317018	-2.53930464217122	1.06377012055996
С	-2.38080610229051	-2.10531882985871	1.29839749588043
С	-2.81236858660578	-3.95737428435374	2.75064189512662
Η	-3.47027506307691	-4.50935035917235	3.42591148361791
С	-1.52765559534671	-4.41960110069072	2.47916812882602
Η	-1.14397480371069	-5.33524952973112	2.93321228429219
С	-3.25792384766055	-2.78616763605010	2.14071043314345
Η	-4.25745547898500	-2.39284346849633	2.34378218542478
С	-0.72890491390698	-3.67837182448353	1.61034012599495
Η	0.27951793520346	-3.99865877186657	1.33279495221060
0	1.31082037093506	1.47788875825260	-0.05866251984013
0	2.42640477604381	3.13763616142982	-2.44288408095664

 Table S21. Energies in a.u.

	ωB97XD3/def2-SVP					ωB97XD3/def2- TZVP	ωB97XD(COSMO)/def2-SVP
Name	Total Energy	Gibbs Free Energy	Free energy correction	ZPE	NImag	Total Energy	Total Energy
${}^{4}\mathbf{R}$	-3679.09631	-3678.60242	0.49389	0.56210	0	-3681.52526	-3679.13534
⁴ TS1	-3679.04955	-3678.55595	0.49360	0.56071	1	-3681.47927	-3679.09579
⁴ I1	-3679.06187	-3678.56484	0.49702	0.56340	0	-3681.49114	-3679.10815
MECP	-3679.06172	-3678.56242	0.49887	0.56289	0	-3681.49090	-3679.10801
² TS2	-3679.03478	-3678.53526	0.49952	0.56271	2^{a}	-3681.47238	-3679.09289
² I2	-3679.08869	-3678.58328	0.50541	0.56709	1	-3681.51859	-3679.13649
² TS3	-3679.06649	-3678.55850	0.50799	0.56945	1	-3681.49637	-3679.11522
² I3	-3679.08807	-3678.58355	0.50452	0.56634	1	-3681.51870	-3679.13453
² TS4	-3679.05869	-3678.55838	0.50031	0.56282	1	-3681.48855	-3679.10713
$^{2}\mathbf{P}$	-3679.21551	-3678.71977	0.49574	0.56141	1	-3681.65828	-3679.26766

^aThe value of the second negative frequency is very small, -14.54 cm⁻¹ and hence ignored.