Electronic Supplementary Information

Platinum thiolate complexes supported by PBP and POCOP pincer ligands

as efficient catalysts for hydrosilylation of carbonyl compounds

Man-Man Xue,^a Jiarui Chang,^a Jie Zhang^{*a} and Xuenian Chen^{*a,b}

^a Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China. E-mail: jie.zhang@htu.edu.cn, xnchen@htu.edu.cn.

^b College of Chemistry and Molecular Engineering, Zhengzhou University Zhengzhou, Henan 450001, China.

Contents

NMR spectra of complexes 1a,b and 2a,b (Fig. S1–S15)	S2–S9
The profile of conversion-time for hydrosilylation of benzaldehyde with $PhSiH_3$ (Fig. S16)	S9
³¹ P{ ¹ H} NMR spectra of the hydrosilylation reaction mixture (Fig. S17)	S10
TOFs of Pt-catalyst systems for hydrosilylation of carbonyl compounds (Table S1)	S 11
Summary of crystal data and structure refinement for 1a , b and 2a , b (Tables S2 and S3)S1	1–S12
Characterization and NMR spectra (Fig. S18–S73) of the isolated alcoholic productsS1	3–S40
Reference	S 41

Fig. S2 ${}^{13}C{}^{1}H$ NMR spectrum of complex 1a (151 MHz, C_6D_6)

Fig. S3 ${}^{31}P{}^{1}H$ NMR spectrum of complex **1a** (243 Hz, C₆D₆)

Fig. S4 ¹¹B NMR spectrum of complex 1a (193 Hz, C_6D_6)

Fig. S5 ¹H NMR spectrum of complex 1b (600 MHz, CDCl₃)

Fig. S6 ${}^{13}C{}^{1}H$ NMR spectrum of complex 1b (151 MHz, CDCl₃)

Fig. S8 ¹¹B NMR spectrum of complex 1b (193 MHz, CDCl₃)

Fig. S10 $^{13}C{^{1}H}$ NMR spectrum of complex 2a (151 MHz, CDCl₃)

Fig. S12 ¹H NMR spectrum of complex 2b (400 MHz, C_6D_6)

Fig. S13 ${}^{13}C{}^{1}H$ NMR spectrum of complex **2b** (151 MHz, C₆D₆)

Fig. S14 ${}^{31}P{}^{1}H$ NMR spectrum of complex 2b (162 MHz, C₆D₆)

Fig. S15 ³¹P{¹H} NMR spectra of complexes **1a**,**b** and **2a**,**b** recorded at room temperature under an air atmosphere (162 MHz, C_6D_6). (A) spectra recorded immediately after making the solutions under an air atmosphere; (B) spectra recorded after the NMR tubes were exposed in air for 6 h.

Fig. S16 The profile of conversion vs time for hydrosilylation of benzaldehyde with PhSiH₃ catalysed by **1a** at 25 °C (see Table 2 entry 9 in the main text for detailed reaction conditions).

Fig. S17 ³¹P{¹H} NMR spectra of the reaction mixture of **1a** (0.1 mmol), PhCHO (0.1 mmol) and PhSiH₃ (0.1 mmol) in C₆D₆ at room temperature. (a) **1a** in C₆D₆ before adding PhCHO and PhSiH₃; (b) spectrum recorded 5 h after adding PhCHO and PhSiH₃; (c) spectrum recorded 23 h after adding PhCHO and PhSiH₃.

Table S1. The highest turnover frequency values (TOF/h^{-1}) of the reported platinum catalyst systems for the hydrosilylation of carbonyl compounds

Entry	Catalyst	Temp. (°C)	TOF for aldehyde	TOF for ketone	Ref
1^a	$[Pt(PPh_3)_3]$	45	0.1		S1
2^a	$[{Pt(PMe_3)}_3(\mu-SiPh_2)_3]$	25	0.7		S1,S2
3 ^{<i>a</i>}	$[Pt(C_2H_4)(PPh_3)_2]$	80	9		S 3
4 ^{<i>a</i>}	$[PtCl_{2}\{(S,R)Fe(C_{5}H_{5})(C_{5}H_{3}(CHMeNMe_{2})PPh_{2}-1,2)\}]$	20		2	S4
5	[PtH(^t Bu ₂ PO) ₂ -1,3-C ₆ H ₃]	60	3,200	200	S5
6	$[Pt(SH)\{B(NCH_2P^tBu_2)_2-1,2-C_6H_4\}]$	65	67,000	3,300	This work

^a The TOF values were calculated based on the experimental data reported in the literature

Complex	1a	1b
CCDC number	2124656	2124657
Empirical formula	$C_{24}H_{45}BN_2P_2PtS$	$C_{30}H_{45}BN_2P_2PtS$
Formula weight	661.52	733.58
Temp, K	150.0(3)	293(2)
Crystal system	orthorhombic	Monoclinic
Space group	Pbca	$P2_1/n$
<i>a</i> , Å	12.01270(10)	12.87340(10)
b, Å	14.4319(2)	17.4918(2)
<i>c</i> , Å	32.1440(5)	14.8878(2)
α()	90	90
β()	90	103.5780(10)
γ(⁹	90	90
Volume, Å ³	5572.68(13)	3258.72(6)
Z	8	4
$d_{\rm calc}$, g cm ⁻³	1.577	1.495
λ, Å	1.54184	1.54184
μ , mm ⁻¹	11.299	9.727
No. of data collected	15153	13424
No. of unique data	5223	6216
R _{int}	0.0413	0.0423
Goodness-of-fit on F^2	1.088	1.158
$R_1, \mathrm{w}R_2 (I > 2\sigma(I))$	0.0416, 0.1080	0.0567, 0.1682
R_1 , w R_2 (all data)	0.0597, 0.1174	0.0632, 0.1732

Table S2. Summary of crystal data and structure refinement for complexes 1a and 1b

Complex	2a	2b
CCDC number	2124658	2124659
Empirical formula	$C_{22}H_{40}O_2P_2PtS$	$C_{28}H_{44}O_2P_2PtS$
Formula weight	625.63	701.72
Temp, K	169.99(10)	169.99(10)
Crystal system	triclinic	monoclinic
Space group	P-1	$P2_1/n$
<i>a</i> , Å	8.3204(3)	12.79010(10)
b, Å	12.0711(4)	12.6583(2)
<i>c</i> , Å	13.4168(4)	20.8480(2)
α()	100.588(3)	90
β()	95.692(3)	106.5180(10)
γ(⁹	104.316(3)	90
Volume, Å ³	1268.58(8)	3236.01(7)
Z	2	4
$d_{\rm calc}, {\rm g \ cm}^{-3}$	1.638	1.440
$\lambda, \text{\AA}$	1.54184	1.54184
μ , mm ⁻¹	12.414	9.800
No. of data collected	8829	15296
No. of unique data	4809	6160
$R_{ m int}$	0.0220	0.0338
Goodness-of-fit on F^2	1.049	1.074
$R_1, \mathrm{w}R_2 (I > 2\sigma(I))$	0.0204, 0.0484	0.0327, 0.0887
R_1 , w R_2 (all data)	0.0224, 0.0491	0.0354, 0.0902

 Table S3. Summary of crystal data and structure refinement for complexes 2a and 2b

Characterization of the isolated products

Benzyl alcohol

Clear colorless liquid, 0.102 g, 95% yield, purity: >99% based on ¹H NMR spectrum. ¹H NMR (600 MHz, CDCl₃, δ): 7.31–7.39 (m, Ar*H*, 5H), 4.60 (s, C*H*₂, 2H), 3.33 (s, O*H*, 1H). ¹³C{¹H} NMR (151 MHz, CDCl₃, δ): 140.89, 128.44, 127.46, 126.98, 64.84. HRMS (ESI): *m*/*z* calculated for C₇H₉O [M + H]⁺ 109.0648, found 109.0647. These spectral data correspond to previously reported data. ^{S6-S8}

Fig. S18 ¹H NMR spectrum of the isolated benzyl alcohol (600 MHz, CDCl₃)

Fig. S19 ¹³C{¹H} NMR spectrum of the isolated benzyl alcohol (151 MHz, CDCl₃)

4-Methoxyphenylmethanol

Light yellow liquid, 0.134 g, 97% yield, purity: >99% based on ¹H NMR spectrum. ¹H NMR (600 MHz, CDCl₃, δ): 7.27 (d, *J* = 8.6 Hz, Ar*H*, 2H), 6.89 (d, *J* = 8.6 Hz, Ar*H*, 2H), 4.56 (s, C*H*₂, 2H), 3.80 (s, C*H*₃, 3H), 2.53 (s, br., O*H*, 1H). ¹³C{¹H} NMR (151 MHz, CDCl₃, δ): 159.12, 133.22, 128.66, 113.93, 64.80, 55.30. HRMS (ESI): *m*/*z* calculated for C₈H₁₁O₂ [M + H]⁺ 139.0754, found 139.0756. These spectral data correspond to previously reported data.^{S6-S9}

Fig. S20 ¹H NMR spectrum of the isolated 4-methoxyphenylmethanol (600 MHz, CDCl₃)

Fig. S21 ¹³C{¹H} NMR spectrum of the isolated 4-methoxyphenylmethanol (151 MHz, CDCl₃)

3-Methoxyphenylmethanol

Clear colorless liquid, 0.133 g, 96% yield, purity: >99% based on ¹H NMR spectra. ¹H NMR (600 MHz, CDCl₃, δ): 7.17 (t, $J_{\text{H-H}}$ = 7.8Hz, Ar*H*, 1H), 6.81–6.83 (m, Ar*H*, 2H), 6.73–6.75 (m, Ar*H*, 1H), 4.51 (s, C*H*₂, 2H), 3.70 (s, C*H*₃, 3H), 2.72 (br., O*H*, 1H). ¹³C{¹H} NMR (151 MHz, CDCl₃, δ): 159.77, 142.64, 129.55, 119.16, 113.18, 112.27, 64.98, 55.21. HRMS (ESI): *m/z* calculated for C₈H₁₁O₂ [M + H]⁺ 139.0754, found 139.0753. These spectral data correspond to previously reported data.^{S10}

Fig. S22 ¹H NMR spectrum of the isolated 3-methoxyphenylmethanol (600 MHz, CDCl₃)

Fig. S23 ¹³C{¹H} NMR spectrum of the isolated 3-methoxyphenylmethanol (151 MHz, CDCl₃)

2-Methoxyphenylmethanol

Colorless liquid, 0.126 g, 91% yield, purity: >99% based on ¹H NMR spectrum. ¹H NMR (600 MHz, CDCl₃, δ): 7.27–7.30 (m, Ar*H*, 2H), 6.94–6.97 (m, Ar*H*, 1H), 6.88–6.90 (m, Ar*H*, 1H), 4.69 (s, C*H*₂, 2H), 3.86 (s, C*H*₃, 3H), 2.52 (s, br, O*H*, 1H). ¹³C{¹H} NMR (151 MHz, CDCl₃, δ): 157.43, 129.13, 128.93, 128.71, 120.67, 110.22, 61.95, 55.27. HRMS (ESI): *m*/*z* calculated for C₈H₁₁O₂ [M + H]⁺ 139.0754, found 139.0755. These spectral data correspond to previously reported data.^{S11}

Fig. S24 ¹H NMR spectrum of the isolated 2-methoxyphenylmethanol (600 MHz, CDCl₃)

Fig. S25¹³C{¹H} NMR spectrum of the isolated 2-methoxyphenylmethanol (151 MHz, CDCl₃)

4-Tolyl-methanol

Colorless crystalline solid, 0.112 g, 92% yield, purity: >99% based on ¹H NMR spectrum. ¹H NMR (600 MHz, CDCl₃, δ): 7.07 (d, $J_{\text{H-H}} = 8.0$ Hz, Ar*H*, 2H), 6.99 (d, $J_{\text{H-H}} = 8.0$ Hz, Ar*H*, 2H), 4.46 (s, CH₂, 2H), 2.17 (s, CH₃, 3H), 1.44 (s, br., OH, 1H). ¹³C{¹H} NMR (151 MHz, CDCl₃, δ): 138.05, 137.56, 129.39, 127.26, 65.43, 21.29. HRMS (ESI): *m*/*z* calculated for C₈H₁₁O [M + H]⁺ 123.0804, found 123.0808. These spectral data correspond to previously reported data.^{S7,S9}

Fig. S26 ¹H NMR spectrum of the isolated 4-tolyl-methanol (600 MHz, CDCl₃)

Fig. S27 ¹³C{¹H} NMR spectrum of the isolated 4-tolyl-methanol (151 MHz, CDCl₃)

4-Nitrophenyl-methanol

Yellow crystalline solid, 0.145 g, 95% yield, purity: >99% based on ¹H NMR spectrum. ¹H NMR (600 MHz, CDCl₃, δ): 8.21 (d, $J_{H-H} = 8.7$ Hz, ArH, 2H), 7.53 (d, $J_{H-H} = 8.7$ Hz, ArH, 2H), 4.83 (s, CH₂, 2H), 2.10 (s, br., OH, 1H). ¹³C{¹H} NMR (151 MHz, CDCl₃, δ): 148.31, 147.42, 127.13, 123.86, 64.12. HRMS (ESI): m/z calculated for C₇H₈NO₃ [M + H]⁺ 154.0499, found 154.0498. These spectral data correspond to previously reported data.^{S6}

Fig. S28 ¹H NMR spectrum of the isolated 4-nitrophenyl-methanol (600 MHz, CDCl₃)

Fig. S29¹³C{¹H} NMR spectrum of the isolated 4-nitrophenyl-methanol (151 MHz, CDCl₃)

4-Cyanobenzenemethanol

Colorless liquid, 0.109 g, 82% yield, purity: >98% based on ¹H NMR spectrum. ¹H NMR (600 MHz, CDCl₃, δ): 7.47–7.49 (m, Ar*H*, 2H), 7.34–7.35 (m, Ar*H*, 2H), 4.61 (s, C*H*₂, 2H), 3.98 (br., O*H*, 1H). ¹³C{¹H} NMR (151 MHz, CDCl₃, δ): 146.61, 132.26, 127.03, 118.94, 110.74, 63.92. HRMS (ESI): *m*/*z* calculated for C₈H₈NO [M + H]⁺ 134.0600, found 134.0601. These spectral data correspond to previously reported data.⁵⁸

Fig. S31 ¹³C{¹H} NMR spectrum of the isolated 4-cyanobenzenemethanol (151 MHz, CDCl₃)

4-Fluorophenyl-methanol

Clear colorless liquid, 0.115 g, 91% yield, purity: >97% based on ¹H NMR spectrum. ¹H NMR (600 MHz, CDCl₃, δ): 7.30–7.33 (m, Ar*H*, 2H), 7.02–7.05 (m, Ar*H*, 2H), 4.63 (s, C*H*₂, 2H), 1.97 (s, br., O*H*, 1H). ¹³C{¹H} NMR (151 MHz, CDCl₃, δ): 162.44 (d, ¹*J*_{C-F} = 246 Hz, Ar*C*), 136.67 (s, Ar*C*), 128.88 (d, ³*J*_{C-F} = 8 Hz, Ar*C*), 115.50 (d, ²*J*_{C-F} = 21 Hz, Ar*C*), 64.72 (*C*H₂). HRMS (ESI): *m*/*z* calculated for C₇H₈FO [M + H]⁺ 127.0554, found 127.0551. These spectral data correspond to previously reported data.^{S7}

Fig. S32 ¹H NMR spectrum of the isolated 4-fluorophenyl-methanol (600 MHz, CDCl₃)

Fig. S33 ¹³C{¹H} NMR spectrum of the isolated 4-fluorophenyl-methanol (151 MHz, CDCl₃)

4-Chlorophenyl-methanol

Colorless crystalline solid, 0.111 g, 78% yield, purity: >97% based on ¹H NMR spectrum. ¹H NMR (600 MHz, CDCl₃, δ): 7.20 (d, $J_{H-H} = 8.3$ Hz, ArH, 2H), 7.15 (d, $J_{H-H} = 8.3$ Hz, ArH, 2H), 4.51 (s, CH₂, 2H), 1.95 (s, br., OH, 1H). ¹³C{¹H} NMR (151 MHz, CDCl₃, δ): 139.35, 133.44, 128.77, 128.39, 64.60. HRMS (ESI): *m*/*z* calculated for C₇H₈ClO [M + H]⁺ 143.0258, found 143.0261. These spectral data correspond to previously reported data. ^{S6,S10}

Fig. S35 ¹³C{¹H} NMR spectrum of the isolated 4-chlorophenyl-methanol (151 MHz, CDCl₃)

4-Bromophenyl-methanol

Colorless crystalline solid, 0.155 g, 84% yield, purity: >97% based on ¹H NMR spectra. ¹H NMR (600 MHz, CDCl₃, δ): 7.47 (d, $J_{\text{H-H}} = 8.3$ Hz, Ar*H*, 2H), 7.22 (d, $J_{\text{H-H}} = 8.3$ Hz, Ar*H*, 2H), 4.62 (s, CH₂, 2H), 2.02 (s, br., OH, 1H). ¹³C{¹H} NMR (151 MHz, CDCl₃, δ): 139.86, 131.73, 128.70, 121.55, 64.63. HRMS (ESI): *m*/*z* calculated for C₇H₇BrONa [M + Na]⁺ 208.9572, found 208.9570. These spectral data correspond to previously reported data.^{S9}

Fig. S36 ¹H NMR spectrum of the isolated 4-bromophenyl-methanol (600 MHz, CDCl₃)

Fig. S37 ¹³C{¹H} NMR spectrum of the isolated 4-bromophenyl-methanol (151 MHz, CDCl₃)

2-Naphthalenemethanol

Colorless crystalline solid, 0.119 g, 75% yield, purity: >99% based on ¹H NMR spectrum. ¹H NMR (600 MHz, CDCl₃, δ): 7.81–7.85 (m, Ar*H*, 4H), 7.47–7.51 (m, Ar*H*, 3H), 4.86 (s, C*H*₂, 2H), 1.84 (s, O*H*, 1H). ¹³C{¹H} NMR (151 MHz, CDCl₃, δ): 138.44, 133.51, 133.08, 128.48, 128.02, 127.85, 126.33, 126.04, 125.58, 125.30, 65.63. HRMS (ESI): *m/z* calculated for C₁₁H₁₁O [M + H]⁺ 159.0804, found 159.0805. These spectral data correspond to previously reported data. ^{S6,S7,S12}

Fig. S39 ¹³C{¹H} NMR spectrum of the isolated 2-naphthalenemethanol (151 MHz, CDCl₃)

4-Phenylbenzyl alcohol

White solid, 0.164 g, 89% yield, purity: >97% based on ¹H NMR spectrum. ¹H NMR (600 MHz, CDCl₃, δ): 7.59–7.61 (m, Ar*H*, 4H), 7.44–7.46 (m, Ar*H*, 4H), 7.34–7.37 (m, Ar*H*, 1H), 4.75 (s, C*H*₂, 2H), 1.73 (s, br., O*H*, 1H). ¹³C{¹H} NMR (151 MHz, CDCl₃, δ): 140.97, 140.81, 140.01, 128.93, 127.61, 127.48, 127.47, 127.24, 65.28. HRMS (ESI): *m*/*z* calculated for C₁₃H₁₃O [M + H]⁺ 185.0961, found 185.0960. These spectral data correspond to previously reported data. ^{S13}

Fig. S40 ¹H NMR spectrum of the isolated 4-phenylbenzyl alcohol (600 MHz, CDCl₃)

Fig. S41 ¹³C{¹H} NMR spectrum of the isolated 4-phenylbenzyl alcohol (151 MHz, CDCl₃)

2-Pyridinylmethanol

Clear colorless liquid, 0.087 g, 80% yield, purity: >97% based on ¹H NMR spectrum. ¹H NMR (600 MHz, CDCl₃, δ): 8.55 (d, $J_{\text{H-H}}$ = 4.7 Hz, Ar*H*, 1H), 7.68 (t, $J_{\text{H-H}}$ = 7.7 Hz, Ar*H*, 1H), 7.26 (d, $J_{\text{H-H}}$ = 7.2 Hz, Ar*H*, 1H), 7.20 (t, $J_{\text{H-H}}$ = 7.7 Hz, Ar*H*, 1H), 4.76 (s, CH₂, 2H), 3.49 (s, br, OH, 1H). ¹³C{¹H} NMR (151 MHz, CDCl₃, δ): 159.19, 148.63, 136.84, 122.48, 120.68, 64.27. HRMS (ESI): *m/z* calculated for C₆H₈NO [M + H]⁺ 110.0600, found 110.0601. These spectral data correspond to previously reported data. ^{S14,S15}

Fig. S42 ¹H NMR spectrum of the isolated 2-pyridinylmethanol (600 MHz, CDCl₃)

Fig. S43 ¹³C{¹H} NMR spectrum of the isolated 2-pyridinylmethanol (151 MHz, CDCl₃)

2-Furanmethanol

Clear colorless liquid, 0.091 g, 93% yield, purity: >98% based on ¹H NMR spectrum. ¹H NMR (600 MHz, CDCl₃, δ): 7.40 (s, Ar*H*, 1H), 6.33–6.34 (m, Ar*H*, 1H), 6.28–6.29 (m, Ar*H*, 1H), 4.60 (s, C*H*₂, 2H), 2.01 (s, br., O*H*, 1H). ¹³C{¹H} NMR (151 MHz, CDCl₃, δ): 154.11, 142.70, 110.48, 107.89, 57.57. HRMS (ESI): *m*/*z* calculated for C₅H₇O₂ [M + H]⁺ 99.0441, found 99.0440. These spectral data correspond to previously reported data.^{S6–S9}

Fig. S44 ¹H NMR spectrum of the isolated 2-furanmethanol (600 MHz, CDCl₃)

Fig. S45¹³C{¹H} NMR spectrum of the isolated 2-furanmethanol (151 MHz, CDCl₃)

3-Cyclohexene-1-methanol

Clear colorless liquid, 0.097 g, 87% yield, purity: >99% based on ¹H NMR spectrum. ¹H NMR (600 MHz, CDCl₃, δ): 5.65–5.59 (m, 2H), 3.50–3.56 (m, 2H), 2.05–2.12 (m, 3H), 1.73–1.82 (m, 3H), 1.55 (s, br., OH, 1H), 1.24–1.31 (m, 1H). ¹³C{¹H} NMR (151 MHz, CDCl₃, δ): 127.28, 126.01, 67.98, 36.44, 28.20, 25.33, 24.75. HRMS (ESI): *m*/*z* calculated for C₇H₁₃O [M + H]⁺ 113.0961, found 113.0962. These spectral data correspond to previously reported data.^{S14}

Fig. S46 ¹H NMR spectrum of the isolated 3-cyclohexene-1-methanol (600 MHz, CDCl₃)

Fig. S47 ¹³C{¹H} NMR spectrum of the isolated 3-cyclohexene-1-methanol (151 MHz, CDCl₃)

3-Phenylallyl alcohol

Colorless liquid, 0.110 g, 82% yield, purity: >95% based on ¹H NMR spectrum. ¹H NMR (600 MHz, CDCl₃, δ): 7.30 (d, *J*_{H-H}= 7.4 Hz, Ar*H*, 2H), 7.23 (t, *J*_{H-H}= 7.5 Hz, Ar*H*, 2H), 7.16 (t, *J*_{H-H}= 7.1 Hz, Ar*H*, 1H), 6.52 (d, *J*_{H-H}= 15.9 Hz, C*H*, 1H), 6.25–6.29 (m, C*H*, 1H), 4.23 (d, *J*_{H-H}= 5.3 Hz, C*H*₂, 2H), 1.88 (s, br., O*H*, 1H). ¹³C{¹H} NMR (151 MHz, CDCl₃, δ): 136.78, 131.21, 128.69, 128.59, 127.78, 126.57, 63.76. HRMS (ESI): *m*/*z* calculated for C₉H₁₁O [M + H]⁺ 135.0804, found 135.0803. These spectral data correspond to previously reported data. ^{S8,S16,S17}

Fig. S48 ¹H NMR spectrum of the isolated 3-phenylallyl alcohol (600 MHz, CDCl₃)

Fig. S49 ¹³C{¹H} NMR spectrum of the isolated 3-phenylallyl alcohol (151 MHz, CDCl₃)

3-Phenyl-2-propynyl alcohol

Light yellow liquid, 0.121 g, 92% yield, purity: >96% based on ¹H NMR spectrum. ¹H NMR (600 MHz, CDCl₃, δ): 7.44–7.45 (m, Ar*H*, 2H), 7.30–7.32 (m, Ar*H*, 3H), 4.50 (s, C*H*₂, 2H), 1.98 (s, br., O*H*, 1H). ¹³C{¹H} NMR (151 MHz, CDCl₃, δ): 131.81, 128.62, 128.44, 122.66, 87.34, 85.81, 51.75. HRMS (ESI): *m*/*z* calculated for C₉H₉O [M + H]⁺ 133.0648, found 133.0645. These spectral data correspond to previously reported data.^{S16}

Fig. S50 ¹H NMR spectrum of the isolated 3-phenyl-2-propynyl alcohol (600 MHz, CDCl₃)

Fig. S51 ¹³C{¹H} NMR spectrum of the isolated 3-phenyl-2-propynyl alcohol (151 MHz, CDCl₃)

3,7-Dimethyl-trans-2,6-octadien-1-ol

Light yellow liquid, 0.112 g, 73% yield, purity: >98% based on ¹H NMR spectrum. ¹H NMR (600 MHz, CDCl₃, δ): 5.40–5.43 (m, 1H), 5.08–5.11 (m, 1H), 4.16 (d, $J_{\text{H-H}}$ = 6.9 Hz, CH_2 , 2H), 2.08–2.12 (m, 2H), 2.02–2.04 (m, 2H), 1.68 (s, CH_3 , 6H), 1.60 (s, CH_3 , 3H), 1.25 (s, br., OH, 1H). ¹³C{¹H} NMR (151 MHz, CDCl₃, δ): 139.97, 131.90, 124.03, 123.45, 59.57, 39.68, 26.53, 25.82, 17.83, 16.41. HRMS (ESI): m/z calculated for C₁₀H₁₉O [M + H]⁺ 155.1430, found 155.1432. These spectral data correspond to previously reported data. ^{S17,S18}

Fig. S52 ¹H NMR spectrum of the isolated 3,7-dimethyl-trans-2,6-octadien-1-ol (600 MHz, CDCl₃)

Fig. S53 ¹³C{¹H} NMR spectrum of the isolated 3,7-dimethyl-trans-2,6-octadien-1-ol (151 MHz, CDCl₃)

1-Phenylethanol

Clear colorless liquid, 0.110 g, 90% yield, purity: >98% based on ¹H NMR spectra. ¹H NMR (600 MHz, CDCl₃, δ): 7.34–7.39 (m, Ar*H*, 4H), 7.26–7.29 (m, Ar*H*, 1H), 4.91 (quart, $J_{\text{H-H}}$ =6.5 Hz, C*H*(OH)CH₃, 1H), 1.90 (s, br., O*H*, 1H), 1.51 (d, $J_{\text{H-H}}$ = 6.5 Hz, C*H*₃, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃, δ): 145.94, 128.62, 127.59, 125.51, 70.53, 25.27. HRMS (ESI): *m/z* calculated for C₈H₁₁O [M + H]⁺ 123.0804, found 123.0803. These spectral data correspond to previously reported data.^{S7,S8}

Fig. S54 ¹H NMR spectrum of the isolated 1-phenylethanol (600 MHz, CDCl₃)

Fig. S55 ¹³C{¹H} NMR spectrum of the isolated 1-phenylethanol (151 MHz, CDCl₃)

1-(p-Tolyl)ethanol

Clear colorless liquid, 0.117g, 86% yield, purity: >97% based on ¹H NMR spectra. ¹H NMR (600 MHz, CDCl₃, δ): 7.27 (d, $J_{\text{H-H}} = 8.0$ Hz, Ar*H*, 2H), 7.17 (d, $J_{\text{H-H}} = 7.9$ Hz, Ar*H*, 2H), 4.88 (quart, $J_{\text{H-H}} = 6.4$ Hz, C*H*(OH)CH₃, 1H), 2.35 (s, ArCH₃, 3H), 1.73 (s, br, OH, 1H), 1.49 (d, $J_{\text{H-H}} = 6.5$ Hz, CH(OH)CH₃, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃, δ): 142.99, 137.27, 129.29, 125.48, 70.38, 25.20, 21.21. HRMS (ESI): *m*/*z* calculated for C₉H₁₃O [M + H]⁺ 137.0961, found 137.0960. These spectral data correspond to previously reported data. ^{S19,S20}

Fig. S56 ¹H NMR spectrum of the isolated 1-(p-tolyl)ethanol (600 MHz, CDCl₃)

Fig. S57 ¹³C{¹H} NMR spectrum of the isolated 1-(p-tolyl)ethanol (151 MHz, CDCl₃)

4-Methoxy-α-methylbenzyl alcohol

Clear colorless liquid, 0.135 g, 89% yield, purity: >99% based on ¹H NMR spectra. ¹H NMR (600 MHz, CDCl₃, δ): 7.30 (d, $J_{\text{H-H}} = 8.6$ Hz, Ar*H*, 2H), 6.88 (d, $J_{\text{H-H}} = 8.6$ Hz, Ar*H*, 2H), 4.85 (quart, $J_{\text{H-H}} = 6.4$ Hz, C*H*(OH)CH₃, 1H), 3.80 (s, OCH₃, 3H), 1.88 (s, br, OH, 1H), 1.48 (d, $J_{\text{H-H}} = 6.4$ Hz, CH(OH)CH₃, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃, δ): 159.10, 138.14, 126.79, 113.97, 70.10, 55.42, 25.14. HRMS (ESI): *m*/*z* calculated for C₉H₁₃O₂ [M + H]⁺ 153.0910, found 153.0913. These spectral data correspond to previously reported data. ^{S16,S19}

Fig. S58 ¹H NMR spectrum of the isolated 4-methoxy-α-methylbenzyl alcohol (600 MHz, CDCl₃)

Fig. S59 ¹³C{¹H} NMR spectrum of the isolated 4-methoxy- α -methylbenzyl alcohol (151 MHz, CDCl₃)

1-(4-Bromophenyl)ethanol

Clear colorless liquid, 0.141 g, 71% yield, purity: >99% based on ¹H NMR spectra. ¹H NMR (600 MHz, CDCl₃, δ): 7.47 (d, $J_{\text{H-H}} = 8.4$ Hz, Ar, 2H), 7.25 (d, $J_{\text{H-H}} = 8.4$ Hz, Ar, 2H), 4.87 (quart, $J_{\text{H-H}} = 6.5$ Hz, $CH(OH)CH_3$, 1H), 1.87 (s, br, OH, 1H), 1.47 (d, $J_{\text{H-H}} = 6.5$ Hz, $CH(OH)CH_3$, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃, δ): 144.90, 131.70, 127.29, 121.30, 69.93, 25.39. HRMS (ESI): m/z calculated for C₈H₉BrONa [M + Na]⁺ 222.9729, found 222.9731. These spectral data correspond to previously reported data. ^{S19}

Fig. S60 ¹H NMR spectrum of the isolated 1-(4-bromophenyl)ethanol (600 MHz, CDCl₃)

Fig. S61 ¹³C{¹H} NMR spectrum of the isolated 1-(4-bromophenyl)ethanol (151 MHz, CDCl₃)

1-(4-Chlorophenyl)ethanol

Clear colorless liquid, 0.120 g, 77% yield, purity: >99% based on ¹H NMR spectra. ¹H NMR (600 MHz, CDCl₃, δ): 7.30–7.33 (m, Ar*H*, 4H), 4.89 (quart, $J_{\text{H-H}} = 6.5$ Hz, $CH(OH)CH_3$, 1H), 1.82 (br., O*H*, 1H), 1.48 (d, $J_{\text{H-H}} = 6.5$ Hz, $CH(OH)CH_3$, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃, δ): 144.39, 133.19, 128.73, 126.93, 69.87, 25.41. HRMS (ESI): m/z calculated for C₈H₁₀ClO [M + H]⁺ 157.0415, found 157.0415. These spectral data correspond to previously reported data. ^{S8,S19}

Fig. S62 ¹H NMR spectrum of the isolated 1-(4-chlorophenyl)ethanol (600 MHz, CDCl₃)

Fig. S63 ¹³C{¹H} NMR spectrum of the isolated 1-(4-chlorophenyl)ethanol (151 MHz, CDCl₃)

1,2,3,4-Tetrahydro-1-naphthalenol

Clear colorless liquid, 0.129 g, 87% yield, purity: >97% based on ¹H NMR spectra. ¹H NMR (600 MHz, CDCl₃, δ): 7.43–7.44 (m, Ar*H*, 1H), 7.19–7.22 (m, Ar*H*, 2H), 7.10–7.12 (m, Ar*H*, 1H), 4.78 (t, $J_{\text{H-H}} = 4.8$ Hz, C*H*(OH), 1H), 2.81–2.86 (m, C*H*₂, 1H), 2.71–2.76 (m, C*H*₂, 1H), 1.95–2.03 (m, C*H*₂, O*H*, 3H), 1.89–1.93 (m, C*H*₂, 1H), 1.76–1.81 (m, C*H*₂, 1H). ¹³C{¹H} NMR (151 MHz, CDCl₃, δ): 138.88, 137.20, 129.08, 128.76, 127.64, 126.25, 68.21, 32.34, 29.33, 18.90. HRMS (ESI): *m/z* calculated for C₁₀H₁₃O [M + H]⁺ 149.0961, found 149.0962. These spectral data correspond to previously reported data.^{57,S19}

Fig. S64 ¹H NMR spectrum of the isolated 1,2,3,4-tetrahydro-1-naphthalenol (600 MHz, CDCl₃)

Fig. S65 ¹³C{¹H} NMR spectrum of the isolated 1,2,3,4-tetrahydro-1-naphthalenol (151 MHz, CDCl₃)

α -Methyl-4-(trifluoromethyl)benzyl alcohol

Light yellow liquid, 0.143 g, 75% yield, purity: >97% based on ¹H NMR spectra. ¹H NMR (600 MHz, CDCl₃, δ): 7.60 (d, $J_{\text{H-H}} = 8.1$ Hz, ArH, 2H), 7.48 (d, $J_{\text{H-H}} = 8.1$ Hz, ArH, 2H), 4.95 (quart, $J_{\text{H-H}} = 6.5$ Hz, CH(OH)CH₃, 1H), 2.20 (s, br, OH, 1H), 1.50 (d, $J_{\text{H-H}} = 6.5$ Hz, C H_3 , 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃, δ): 149.83, 129.73 (q, ² $J_{\text{C-F}} = 32$ Hz), 125.78, 125.65 (q, ³ $J_{\text{C-F}} = 4$ Hz), 124.30 (q, ¹ $J_{\text{C-F}} = 272$ Hz), 69.93, 25.49. HRMS (ESI): m/z calculated for C₉H₁₀F₃O [M + H]⁺ 191.0678, found 191.0679. These spectral data correspond to previously reported data.^{S7,S20}

Fig. S66 ¹H NMR spectrum of the isolated α-methyl-4-(trifluoromethyl)benzyl alcohol (600 MHz, CDCl₃)

Fig. S67 ¹³C{¹H} NMR spectrum of the isolated α -methyl-4-(trifluoromethyl)benzyl alcohol (151 MHz, CDCl₃)

4,4'-Difluorobenzhydryl alcohol

Colorless crystalline solid, 0.154 g, 70% yield, purity: >96% based on ¹H NMR spectra. ¹H NMR (600 MHz, CDCl₃, δ): 7.30–7.33 (m, Ar*H*, 4H), 7.01–7.04 (m, Ar*H*, 4H), 5.80 (s, C*H*(OH), 1H), 2.42 (s, br., O*H*, 1H). ¹³C{¹H} NMR (151 MHz, CDCl₃, δ): 162.35 (d, ¹*J*_{C-F} = 246 Hz), 139.55 (d, ⁴*J*_{C-F} = 3 Hz), 128.30 (d, ³*J*_{C-F} = 8 Hz), 115.52 (d, ²*J*_{C-F} = 22 Hz), 75.05. HRMS (ESI): *m*/*z* calculated for C₁₃H₁₀F₂ONa [M + Na]⁺ 243.0592, found 243.0591. These spectral data correspond to previously reported data.^{S12}

Fig. S69 ¹³C{¹H} NMR spectrum of the isolated 4,4'-difluorobenzhydryl alcohol (151 MHz, CDCl₃)

4-Bromo-α-phenylbenzenemethanol

Colorless crystalline solid, 0.183 g, 70% yield, purity: >97% based on ¹H NMR spectra. ¹H NMR (600 MHz, CDCl₃, δ): 7.45–7.47 (m, Ar*H*, 2H), 7.33–7.36 (m, Ar*H*, 4H), 7.28–7.31 (m, Ar*H*, 1H), 7.24–7.26 (m, Ar*H*, 2H), 5.76 (s, C*H*(OH), 1H), 2.46 (s, br., O*H*, 1H). ¹³C{¹H} NMR (151 MHz, CDCl₃, δ): 143.44, 142.82, 131.64, 128.76, 128.33, 127.98, 126.64, 121.51, 75.73. HRMS (ESI): *m/z* calculated for C₁₃H₁₁BrONa [M + Na]⁺ 284.9885, found 284.9884. These spectral data correspond to previously reported data.^{S20}

Fig. S70 ¹H NMR spectrum of the isolated 4-bromo-α-phenylbenzenemethanol (600 MHz, CDCl₃)

Fig. S71 ¹³C{¹H} NMR spectrum of the isolated 4-bromo- α -phenylbenzenemethanol (151 MHz, CDCl₃)

4-Phenyl-3-buten-2-ol

Colorless crystalline solid, 0.121 g, 82% yield, purity: >96% based on ¹H NMR spectrum. ¹H NMR (600 MHz, CDCl₃, δ): 7.42 (d, *J*_{H-H} = 7.6 Hz, Ar*H*, 2H), 7.35 (t, *J*_{H-H} = 7.6 Hz, Ar*H*, 2H), 7.28 (d, *J*_{H-H} = 7.5 Hz, Ar*H*, 1H), 6.60 (d, *J*_{H-H} = 15.9 Hz, C*H*, 1H), 6.26 (dd, *J*_{H-H} = 15.9 and 6.4 Hz, C*H*, 1H), 4.52 (quint, *J*_{H-H} = 6.3 Hz, C*H*(OH), 1H), 1.86 (s, br, O*H*, 1H), 1.41 (d, *J*_{H-H} = 6.4 Hz, C*H*₃, 3H). ¹³C{¹H} NMR (151 MHz, CDCl₃, δ): 136.81, 133.66, 129.52, 128.70, 127.75, 126.57, 69.17, 23.53. HRMS (ESI): *m*/*z* calculated for C₁₀H₁₃O [M + H]⁺ 149.0961, found 149.0960. These spectral data correspond to previously reported data.^{S21}

Fig. S72 ¹H NMR spectrum of the isolated 4-phenyl-3-buten-2-ol (600 MHz, CDCl₃)

Fig. S73 ¹³C{¹H} NMR spectrum of the isolated 4-phenyl-3-buten-2-ol (151 MHz, CDCl₃)

Reference

- S1 Y. Tsuchido, R. Abe, M. Kamono, K. Tanaka, M. Tanabe and K. Osakada, Bull. Chem. Soc. Jpn., 2018, 91, 858–864.
- S2 M. Tanabe, M. Kamono, K. Tanaka and K. Osakada, Organometallics, 2017, 36, 1929–1935.
- S3 Y. K. Kong, J. Kim, S. Choi and S.-B. Choi, *Tetrahedron Lett.*, 2007, 48, 2033–2036.
- S4 W. R. Cullen, S. V. Evans, N. F. Han and J. Trotter, *Inorg. Chem.*, 1987, 26, 514–519.
- S5 J. Chang, F. Fang, J. Zhang and X. Chen, *Adv. Synth. Catal.*, 2020, **362**, 2709–2715.
- S6 S. Chakraborty, J. A. Krause and H. Guan, Organometallics, 2009, 28, 582–586.
- S7 P. Bhattacharya, J. A. Krause and H. Guan, *Organometallics*, 2011, **30**, 4720–4729.
- S8 X. Qi, H. Zhao, H. Sun, X. Li, O. Fuhr and D. Fenske, New J. Chem., 2018, 42, 16583–16590.
- S9 T. K. Mukhopadhyay, C. Ghosh, M. Flores, T. L. Groy and R. J. Trovitch, *Organometallics*, 2017, **36**, 3477–3483.
- S10 G. Liu, Y. Wang, B. Zhu, L. Zhang and C.-Y. Su, New J. Chem., 2018, 42, 11358–11363.
- S11 S. R. Tamang, D. Bedi, S. Shafiei-Haghighi, C. R. Smith, C. Crawford and M. Findlater, *Org. Lett*, 2018, **20**, 6695–6700.
- S12 D. Cao, S. M. Xia, P. Pan, H. Zeng, C. J. Li and Y. Peng, Green Chem., 2021, 23, 7539–7543.
- S13 Y.-N. Duan, X. Du, Z. Cui, Y. Zeng, Y. Liu, T. Yang, J. Wen and X. Zhang, J. Am. Chem. Soc. 2019, 141, 20424–20433.
- S14 T. K. Mukhopadhyay, C. L. Rock, M. Hong, D. C. Ashley, T. L. Groy, M.-H. Baik and R. J. Trovitch, J. Am. Chem. Soc, 2017, 139, 4901–4915.
- S15 R. Wang, Y. Yue, J. Qi, S. Liu and L. B. Xing, J. Catal., 2021, 399, 1–7.
- S16 S. Ren, S. Xie, T. Zheng, Y. Wang, S. Xu, B. Xue, X. Li, H. Sun, I. O. Fuhrd and D. Fensked, *Dalton Trans.*, 2018, 47, 4352–4359.
- S17 S. Weber, J. Brunig, L. F. Veiros and K. Kirchner, Organometallics, 2021, 40, 1388–1394.
- S18 W. Zhang, J. Du, G. Xu, H. Lin, G. Wang and M. Tao, *Green Chem.*, 2016, 18, 2726–2735.
- S19 C. A. Swamy, P. A. Varenikov and G. de Ruiter, Organometallics, 2020, 39, 247–257.
- S20 L. Süsse, J. Hermeke and M. Oestreich, J. Am. Chem. Soc, 2016, 138, 6940–6943.
- S21 A. Horn and U. Kazmaier, Org. Lett, 2019, 21, 4595–4599.