Electronic Supplementary Information

Mn⁴⁺ non-equivalent doped fluoride phosphor towards a short fluorescence decay time for backlighting

Jie Li,^a Xinyi Yang,^b Tong Li,^a Yanqing Ye,^a Yayun Zhou,^{**,c} Qin Wang,^b Qiang

Zhou^a and Zhengliang Wang^{*,a}

^a Key Laboratory of Green-chemistry Materials in University of Yunnan Province,

Key Laboratory of Advanced Synthetic Chemistry (Yunnan Minzu University) of State Ethnic Affairs Commission, School of Chemistry & Environment, Yunnan Minzu University, Kunming, 650500, P. R. China.

^b College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, P. R. China.

^c State Key Laboratory of Luminescent Materials and Devices, and Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou 510641, P. R. China.

Email: *wangzhengliang@foxmail.com, **zhouyayun@scut.edu.cn.

Fig. S1 The simulation structure diagram for four possible Mn^{4+} substitution models

Fig. S2 (a) SEM morphology and (b) element mapping of $Rb_2NaInF_6:Mn^{4+}$ (5.59

mol%).

Fig. S3 Tanabe Sugano energy level diagram of Mn^{4+} in this case.

Fig. S4 CIE coordinates of white LEDs combined with $Rb_2NaInF_6{:}Mn^{4+},\,\beta{-}$

SiAlON: Eu^{2+} , and a blue GaN chip.

No.	Amount of K_2MnF_6 (mmol)	Doping amount of Mn ⁴⁺ (mol%)
1	0.05	1.89%
2	0.10	3.62%
3	0.15	5.59%
4	0.20	7.70%
5	0.25	8.99%

Tab. S1 XRF results of $Rb_2NaInF_6:Mn^{4+}$.

Formula	Rb_2NaInF_6	$Rb_2NaInF_6:Mn^{4+}$	
Crystal	Cubic	Cubic	
Space group	Fm-3m	Fm-3m	
<i>a</i> /Å	8.86060	8.6756(2)	
b/Å	8.86060	8.6756(2)	
$c/{ m \AA}$	8.86060	8.6756(2)	
α	90	90	
β	90	90	
γ	90	90	
$V(Å^3)$	695.65	652.98(2)	
Ζ	4	4	
$R_{ m wp}$	1	9.62%	
$R_{ m p}$	1	7.18%	
$R_{ m exp}$	/	5.37%	
x^2	/	3.21	

Tab. S2 The unit cell parameters of $Rb_2NaInF_6:Mn^{4+}$ phosphor samples after refiningin comparison with those of Rb_2NaInF_6 .

Model	Heat lattice	Substitution forms	Vacanav	Formation
	Host lattice	Substitution forms	vacancy	energy (eV)
M1	Rb_2NaInF_6	$Mn_{Na}^{}$	$V_{In}^{'''}$	14.81
M2	Rb_2NaInF_6	Mn_{In}^+	V _{Na1}	9.78
M3	Rb ₂ NaInF ₆	Mn_{In}^+	V _{Na2}	10.15
M4	Rb_2NaInF_6	Mn_{In}^{+}	V_{Rb}	10.47
M2 M3 M4	Rb ₂ NaInF ₆ Rb ₂ NaInF ₆ Rb ₂ NaInF ₆	Mn_{In}^{+} Mn_{In}^{+} Mn_{In}^{+}	V_{Na1} V_{Na2} V_{Rb}	9.7 10. 10.4

Tab. S3 The possible Substitution models for $Rb_2NaInF_6:Mn^{4+}$ and the corresponding calculated formation energy.

Temperature (°C)	CIE coordinates (x, y)	ΔE
20	0.692, 0.307	/
40	0.691, 0.309	0.0042
60	0.689, 0.310	0.0084
80	0.688, 0.312	0.0125
100	0.686, 0.313	0.0166
120	0.684, 0.316	0.0234
140	0.682, 0.318	0.0287
160	0.678, 0.321	0.0381
180	0.675, 0.325	0.0471
200	0.672, 0.328	0.0547

Tab. S4 Color coordinate offset for $Rb_2NaInF_6:Mn^{4+}$ (5.59 mol%) under different temperatures.

Content of Mn ⁴⁺ (mol%)	EQE (%)	IQE (%)	
1.89	19.4	79.9	
3.62	28.8	70.4	
5.59	37.5	68.8	
7.70	30.4	66.4	
8.99	26.2	51.3	

Tab. S5 EQE, IQE values of $Rb_2NaInF_6:Mn^{4+}$ with different contents of Mn^{4+} .

Phosphor	Current	LE	CIE		Tc	NTSC
		1m/W	Х	у	(K)	(%)
	20	30.5	0.3137	0.3341	6418	93.5
	40	27.6	0.3096	0.3332	6641	93.3
β-SiALON	60	24.2	0.3055	0.3310	6886	93.1
	80	23.9	0.3019	0.3290	7110	93.1
+	100	23.0	0.2989	0.3268	7321	92.8
$Rb_2NaInF_6:Mn^{4+}$	120	21.5	0.2960	0.3246	7536	92.5
(5,500/)	140	20.9	0.2940	0.3237	7678	92.5
(3.39%)	160	19.8	0.2903	0.3169	8019	91.8
	180	18.0	0.2887	0.3236	8034	92.7
	200	19.0	0.2891	0.3224	8036	92.1
	220	17.9	0.2847	0.3199	8414	91.7
	240	16.5	0.2834	0.3133	8689	90.8
	260	16.0	0.2824	0.3142	8738	90.7
	280	15.5	0.2821	0.3157	8710	90.6
	300	15.2	0.2816	0.3184	8670	91.1

Tab. S6 Photoelectric parameters of the as-fabricated w-LED under different currents.