Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2021

Electronic supplementary information (ESI)

Pseudotetrahedral Zn(II)-(R or S)-dihalogen-salicylaldiminato complexes with Λ - or Δ chirality induction at-metal

Hadi Amiri Rudbari,^{a,*} Arezoo Saadati,^a Mahnaz Aryaeifar,^a Olivier Blacque,^b Isabel Correia,^c Mohammad Khairul Islam,^d Dennis Woschko,^e Christoph Janiak,^{e,*} and Mohammed Enamullah^{d,*}

^a Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.

^b Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-

8057, Zurich, Switzerland.

^c Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal.

^d Department of Chemistry, Jahangirnagar University, Dhaka1342, Bangladesh.

^e Institut für Anorganische Chemie und Strukturchemie, Universität Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany.

S2

Fig. S1 EI-mass spectra for ZnR1-3 and ZnS1-3 complexes.

Fig. S2 Two-dimensional fingerprint plots for the Zn(II)-complexes.

Fig. S3 Relative contributions to the Hirshfeld surfaces area for different intermolecular contacts in Zn(II)-complexes.

Fig. S4 ¹H NMR (400 MHz) spectra for Zn*R*2 with small amounts of extra free Schiff base (*R*-H2) in dmso-d₆ at 25 °C at different time intervals of complex dissolution (single peak corresponds to Λ -Zn*R*2 diastereomer).

Fig. S5 ¹H NMR (400 MHz) spectra for Zn*R*1 at variable temperature (20, 0, -20, -30 and -40 °C) in dmso-d₆/CDCl₃ (50%, v/v) (single peak corresponds to Λ -Zn*R*1 diastereomer). Very weak peaks correspond to the Schiff base (<3.0 %), resulting from hydrolysis of the complex with time.

Fig. S6 UV-Vis. spectra for the enantiopure Schiff bases *R*-H1 (3.24x10⁻² mM), *S*-H1 (3.24x10⁻² mM), *R*-H2 (2.45x10⁻² mM), *S*-H2 (3.09x10⁻² mM), *R*-H3 (2.79x10⁻² mM) and *S*-H3 (3.10x10⁻² mM) in methanol at 25 °C.

Fig. S7 UV-Vis. spectra for the enantiopure Zn*R*1 (3.89x10⁻² mM), Zn*S*1 (3.22x10⁻² mM), Zn*R*2 (2.60x10⁻² mM), Zn*S*2 (1.58x10⁻² mM), Zn*R*3 (2.16x10⁻² mM) and Zn*S*3 (2.97x10⁻² mM) in methanol/chloroform (50%, v/v) at 25 °C.

Fig. S8 Electronic circular dichroism (ECD) spectra for enantiomeric pairs of the Schiff bases *R*-H1/S-H1, *R*-H2/S-H2 and *R*-H3/S-H3 (*ca.* 3.00x10⁻² mM) in methanol at 25 °C.

Fig. S9 Experimental and simulated ECD spectra for enantiomeric pairs (a) ZnR2/ZnS2 and (b) ZnR3/ZnS3 (*ca.* $3.00x10^{-2}$ mM) in methanol/chloroform (50%, v/v) at 25 °C ($\Delta\epsilon_{exptl.}$ values are increased by 2 times). Spectra simulated at b3lyp/tzvp//b3lyp/6-31G(d) with PCM in chloroform, respectively. Gaussian band shape with exponential half-width $\sigma = 0.16$ eV.

Fig. S10 Optimized structures for diastereomeric pair Λ -Zn- R/Δ -Zn-R and Δ -Zn- S/Λ -Zn-S at b3lyp/6-31g(d), respectively.

Fig. S11 Experimental UV-Vis. spectrum for ZnS1 ($3.22x10^{-2}$ mM) in methanol/chloroform (50%, v/v) at 25 °C and computed UV-Vis. spectra for Δ -ZnS1 at different functionals and the basis sets, respectively. Gaussian band shape with exponential half-width, $\sigma = 0.16$ eV.

Fig. S12 Experimental ECD spectra for Zn-S1 (~ $3.00x10^{-2}$ mM) in methanol/chloroform (50%, v/v) at 25 °C and computed ECD spectra for Δ -ZnS1 at different functionals and the basis sets, respectively. Gaussian band shape with exponential half-width, $\sigma = 0.16$ eV.

Fig. S13 Calculated UV-Vis. spectra for diastereomeric pairs Λ -ZnS1/ Δ -ZnS1 and Λ -ZnR1/ Δ -ZnR1 at b3lyp/tzvp//b3lyp/6-31g(d), respectively. Gaussian band shape with exponential half-width $\sigma = 0.16$ eV.

Fig. S14 Calculated ECD spectra for diastereomeric pairs Λ/Δ -ZnS1 and Λ/Δ -ZnR1; Λ/Δ -ZnS2 and Λ/Δ -ZnR2; Λ/Δ -ZnS3 and Λ/Δ -ZnR3 at b3lyp/tzvp//b3lyp/6-31g(d), respectively. Gaussian band shape with exponential half-width σ = 0.16 eV.

Fig. S15 Experimental and simulated ECD spectra (the opposite comparison) for ZnR1/ZnS1, ZnR2/ZnS2 and ZnR3/ZnS3 (*ca.* 3.00x10⁻² mM) in methanol/chloroform (50%, v/v) at 25 °C ($\Delta \epsilon_{exptl.}$ values are increased by 2 times). Spectra simulated at b3lyp/tzvp//b3lyp/6-31G(d) with PCM in chloroform, respectively. Gaussian band shape with exponential half-width $\sigma = 0.16$ eV.

Table S1. Crystal data and structure refinement for Zn(II)-Chiral Schiff bases complexes.

	Λ -Zn $R1$	Λ -ZnR2	Λ -ZnR3	Δ -ZnS1	Δ -ZnS2	Δ -ZnS3
Empirical formula	$C_{30}H_{24}Cl_4ZnN_2O_2$	$C_{30}H_{24}Br_4ZnN_2O_2$	$C_{30}H_{24}Br_2Cl_2ZnN_2O_2$	$C_{30}H_{24}Cl_4ZnN_2O_2$	$C_{30}H_{24}Br_4ZnN_2O_2$	$C_{30}H_{24}Br_2Cl_2ZnN_2O_2$
M (g mol ⁻¹)	651.68	829.52	740.60	651.68	829.52	740.60
Temperature (K)	160(1)	160(1)	160(1)	160(1)	160(1)	160(1)
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073	0.71073	1.54184
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic	monoclinic

Space group	12	12	12	12	12	I2
<i>a</i> (Å)	10.08126(12)	10.2155(3)	10.21573(14)	10.0890(3)	10.2179(3)	10.2247(2)
<i>b</i> (Å)	10.86962(12)	10.9297(3)	10.88240(13)	10.8821(3)	10.9275(3)	10.8940(3)
<i>c</i> (Å)	12.76560(16)	12.9935(3)	12.90981(18)	12.7748(3)	12.9953(4)	12.9214(3)
$\beta(^{\circ})$	106.5627(13)	106.622(3)	107.2179(14)	106.586(3)	106.617(3)	107.216(3)
$V(Å^3)$	1340.81(3)	1390.14(7)	1370.89(3)	1344.19(7)	1390.41(8)	1374.80(6)
$Z/D_{\text{calc.}}(\text{g cm}^{-3})$	2/ 1.614	2/ 1.982	2/1.794	2/1.610	2/1.981	2/1.789
μ (mm ⁻¹)	1.348	6.665	4.038	1.344	6.663	6.697
F(000)	664.0	808.0	736.0	664.0	808.0	736.0
θ range (°)	5.012 to 61.012	4.96 to 52.734	5.608 to 52.744	5.636 to 52.738	4.96 to 52.728	9.744 to 148.854
<i>h</i> ; <i>k</i> ; <i>l</i> ranges	$\pm 14;\pm 15;\pm 18$	±12; ±13; -15,+16	$\pm 12; \pm 13; \pm 16$	$\pm 12; \pm 13; \pm 15$	$\pm 12; \pm 13; \pm 16$	$\pm 12; \pm 13; \pm 16$
Reflections collected	20946	14589	15540	12841	14735	8416
Independent reflect. (R_{int})	4106 (0.0211)	2841 (0.0208)	2801 (0.0223)	2754 (0.0325)	2839 (0.0411)	2762 (0.0154)
Data/restraints/parameters	4106/1/178	2841/1/178	2801/1/178	2754/1/178	2839/1/178	2762/1/178
Goodness-of-fit on F^{2a}	1.066	1.058	1.056	1.034	0.997	1.057
$R_1/wR_2 [I > 2\sigma (I)]^b$	0.0189/ 0.0511	0.0134/0.0330	0.0185/0.0472	0.0238/0.0558	0.0180/0.0416	0.0222/0.0587
R_1/wR_2 (all data) ^b	0.0192/ 0.0512	0.0138/0.0332	0.0186/0.0473	0.0265/0.0572	0.0193/0.0418	0.0224/0.0589
Max./min. $\Delta \rho$ (e. Å ⁻³) ^c	0.50/-0.18	0.31/-0.17	0.17/-0.21	0.45/-0.27	0.45/-0.27	0.19/-0.51
Flack parameter ^d	-0.004(3)	-0.010(4)	-0.003(8)	-0.010(6)	0.011(5)	-0.007(19)
CCDC number	2000646	2000644	2000648	2000652	2000650	2000653
Code	hadi2711	hadi1611	Hadi2111	hadi2211	hadi1511	Hadi2011

^aGoodness-of-fit = $[\sum[w(F_o^2 - F_c^2)^2]/(n-p)]^{1/2}$; ^b $R_1 = [\sum(||F_o| - |F_c|)/\sum|F_o|]$; $wR_2 = [\sum[w(F_o^2 - F_c^2)^2]/\sum[w(F_o^2)^2]]^{1/2}$; ^c $(F_o^2 - F_c^2)^2$]/ $\sum[w(F_o^2 - F_c^2)^2]/\sum[w(F_o^2 - F_c^2)]$

Largest difference peak and hole; ^d Absolute structure parameter.¹⁻⁴

Entity	X ₁ , X ₂	$\theta / ^{\circ}$	$ au_{tet}$ a	$\tau_4{}^{b}$
Λ -ZnR1	Cl, Cl	75.93	0.84	0.75
Δ -ZnS1	Cl, Cl	76.14	0.85	0.75
Λ -ZnR2	Br, Br	75.92	0.84	0.75
Δ -ZnS2	Br,Br	76.10	0.85	0.75
Λ -ZnR3	ClBr	75.46	0.84 0.84	0.75
Δ -ZnS3	ClBr	75.47		0.75

Table S2. Values of dihedral angle (θ /°) and geometric indexes (τ _{tet-sq} and τ ₄) in the Zn(II)-*chiral* Schiff base complexes.

^a $\tau_{\text{tet-sq}} = \theta/90$. ^b $\tau_4 = [\{360^\circ - (\alpha + \beta)\}/141]^\circ$, where α , β are the two largest angles in Table 1. Note: θ should be 90° for a tetrahedral geometry and 0° for a square planar geometry (not considering the imminent distortion induced by the chelate ring formation).⁵¹ Accordingly $\tau_{\text{tet-sq}} = 1.00$ for tetrahedral and 0.00 for square planar geometry. $\tau_4 = 1.00$ for a perfect tetrahedral geometry and 0.00 for a perfect square planar geometry.⁵² For two chelate ligands, as in the present bis-bidentate Schiff base complexes, τ_4 will not correctly assess a tetrahedral geometry because of the already imminent distortion induced by the chelate ring formation.

Table S3. Supramolecular X...O(1) interactions in Zn(II)-complexes.

Entity	X =	X…O(1)/Å	C(4)—X…O(1)/°	C(1)—O(1)…X/°	< or > normal
					X…O bond (%)

Λ -Zn- $R1$	Cl(2)	3.402	141.220	143.575	+ 1.85
Δ -Zn-S1	Cl(2)	3.407	141.210	143.677	+ 2.00
Λ -Zn-R2	Br(2)	3.342	141.265	143.069	- 3.13
Δ -Zn-S2	Br(2)	3.345	141.234	143.056	- 3.04
Λ -Zn-R3	Cl(1)	3.431	140.984	143.062	+2.72
Δ -Zn-S3	Cl(1)	3.433	141.163	143.404	+2.78

Table S4. Geometrical parameters (Å and °) for descriptions of C–X··· π interactions in Zn(II)-complexes.

d _{centroid}	$\begin{array}{c} X \\ \beta \\$	(D-Type)	r _a (L-Type) r _b (SL-Type)
	Λ -Zn $R1/\Delta$ -Zn $S1$	Λ -ZnR2/ Δ -ZnS2	Λ -ZnR3/ Δ -ZnS3
$C-X\cdots\pi^1$	$C-Cl_1\cdots\pi$	$C-Br_1\cdots\pi$	$C-Br_1\cdots\pi$
$r_{\rm r}$ / Å	3.883/3.885	3.806/3.807	3.790/3.793
$r_{ m a}$ / Å	3.523/3.527 (C9)	3.473/3.473 (C9)	3.454 (C14)/3.463 (C10)
$r_{ m b}$ / Å	3.472/3.474	3.404/3.404	3.390/3.395
$D_{ m plane}$ / Å	3.402/3.404	3.341/3.342	3.333/3.337
$d_{ m centroid}$ / Å	3.883/3.885	3.806/3.807	3.790/3.793
$d_{ m offset}$ / Å	1.872/1.871	1.823/1.822	1.805/1.803
lpha ' °	61.17/61.21	61.38/61.41	61.56/61.61
<i>β</i> / °	145.18/144.97	145.64/145.66	146.16/146.18
Туре	SL	SL	SL

Definition of geometrical C–X··· π parameters

 $^{1}\pi$ (C₉-C₁₄).

Analysis of intra-molecular interactions for the Δ -ZnS/ Λ -ZnS, resp. Λ -ZnR/ Δ -ZnR diastereomeric difference.

atom # Frag1 atom # Frag2 a	IBSIW index	Interaction
	[a.u./A ²]	
27 63	1.558382	(CH3)C-HO
31 59	1.557899	OH-C(CH3)
15 33	0.997136	(Ph)C-HC(sal)
1 47	0.996316	(sal)CH-C(Ph)
15 63	0.906876	(Ph)C-HO
31 47	0.905773	OH-C(Ph)
31 62	0.623283	0N
30 63	0.623207	NO
28 59	0.448733	ClH-C(CH3)
27 60	0.448715	(CH3)C-HCl
1 46	0.445425	(sal)CC(Ph)
14 33	0.445102	(Ph)CC(sal)
31 46	0.429735	OC(Ph)
14 63	0.429632	(Ph)CO
31 56	0.418336	OC(CH3)
24 63	0.418314	(CH3)CO
21 53	0.371012	(Ph)C-HH-C(Ph)
2 47	0.350234	(sal)CH-C(PH)
15 34	0.350018	(Ph)C-HC(sal)
27 33	0.345781	(CH3)C-HC(sal)
1 59	0.345639	(sal)CH-C(CH3)
20 52	0.321164	(Ph)CC(Ph)
15 40	0.302054	(Ph)C-HC(sal)
8 47	0.301647	(sal)CH-C(Ph)
31 63	0.296042	00
22 52	0.293353	(Ph)CC(Ph)
20 54	0.293054	(Ph)CC(Ph)
31 43	0.289533	OC(C-methin)
11 63	0.289405	(methin-C)CO
22 54	0.261365	(Ph)CC(Ph)
8 46	0.255609	(sal)CC(Ph)
14 40	0.255479	(Ph)CC(sal)
20 53	0.254196	(Ph)CH-C(Ph)
21 52	0.253586	(Ph)C-HC(Ph)
20 55	0.222963	(Ph)CH-C(Ph)
23 52	0.222903	(Ph)C-HC(Ph)
30 62	0.200424	NN
14 41	0.183581	(Ph)CC(imin)
9 46	0.183569	(imin)CC(Ph)
31 45	0.175972	OC(Ph)
13 63	0.175729	(Ph)CO
28 47	0.160912	ClH-C(Ph)
15 60	0.160718	(Ph)C-H Cl
8 48	0 155667	(sal)C C(Ph)
16 40	0.155500	(Ph)CC(sal)
18 55	0 154467	(Ph)C H-C(Ph)
23 50	0 154166	(Ph)C-H $C(Ph)$
25 50	0 153368	(sal)C C(CH3)
2 35	0 153359	(CH3)C-H C(sal)
14 67	0.142815	(Ph)C N
30 46	0 142657	N C(Ph)
0 10	1 0.1 14001	1 1

Table S5. 70 Strongest inter-fragment interactions as IBSIW index for Δ -ZnS1.

9 48	0.132594	(imin)CC(Ph)
16 41	0.132553	(Ph)CC(imin)
22 53	0.121706	(Ph)CH-C(Ph)
21 54	0.121308	(Ph)C-HC(Ph)
8 49	0.116124	(sal)CH-C(Ph)
17 40	0.116070	(Ph)C-HC(sal)
1 48	0.113776	(sal)CC(Ph)
16 33	0.113625	(Ph)CC(sal)
18 54	0.106890	(Ph)CC(Ph)
22 50	0.106832	(Ph)CC(Ph)
30 45	0.105881	NC(Ph)
13 62	0.105762	(Ph)CN
2 46	0.104529	(sal)CC(Ph)
14 34	0.104384	(Ph)CC(sal)
15 41	0.103609	(Ph)C-HC(imin)
9 47	0.103389	(imin)CH-C(Ph)
22 55	0.102645	(Ph)CH-C(Ph)
23 54	0.102522	(Ph)C-HC(Ph)
28 56	0.098306	ClC(CH3)
SUM	22.09	

^a Fragment 1 is the ligand with atom numbers 1-31, fragment 2 the ligand with atom numbers 33-63. For atom numbering see the following graph:

Table S6. 70 Strongest inter-fragment interactions as IBSIW index for Λ -ZnS1.

atom # Frag1 atom # Frag2 ^a	IBSIW index	Interaction
	[a.u./Å ²]	
12 63	1.635349	(methin)C-HO
31 44	1.634854	OH-C(methin)
30 63	0.861119	NO
31 62	0.860700	ON
11 63	0.699037	(methin)CO
31 43	0.698832	OC(methin)
21 53	0.490237	(Ph)C-HH-C(Ph)
20 52	0.463831	(Ph)CC(Ph)
21 52	0.405366	(Ph)C-HC(Ph)
20 53	0.405207	(Ph)CH-C(Ph)

1 47	0 392874	(sal)C H-C(Ph)
15 22	0.302374	(Bh)CHC(al)
13 33	0.392374	(FII)C-FIC(sal)
12 33	0.349622	(methin)C-HC(sal)
1 44	0.349489	(sal)CH-C(methin)
31 47	0.267812	OH-C(Ph)
15 63	0.267390	(Ph)C-HO
2 47	0.256915	(sal)CH-C(Ph)
15 34	0.256768	(Ph)C-HC(sal)
12 60	0.251530	(methin)C-HCl
28 44	0.251474	ClH-C(methin)
1 46	0 240414	(sal)C C(Ph)
1/ 33	0.240302	$(\text{Bull}) \in \dots \in (1 \text{ II})$
20 54	0.240302	$(\mathbf{Ph}) \mathbf{C} = \mathbf{C}(\mathbf{Ph})$
20 54	0.220918	(Ph)C = C(Ph)
22 32	0.220912	(Pn)CC(Pn)
31 63	0.212265	00
13 63	0.205910	(Ph)CO
31 45	0.205861	OC(Ph)
22 54	0.202005	(Ph)CC(Ph)
31 46	0.197169	OC(Ph)
14 63	0.197005	(Ph)CO
28 47	0.189200	(Ph)C-HCl
15 60	0.189046	ClH-C(Ph)
30 62	0 171955	N N
11 33	0.150363	(methin)C C(sal)
1 43	0.150317	(sal)C C(methin)
21 50	0.130317	$(Bh) \subset H \subset (Dh)$
19 52	0.140396	$(\mathbf{P}\mathbf{h})\mathbf{C}$ $\mathbf{H}\mathbf{C}(\mathbf{P}\mathbf{h})$
18 55	0.140475	(PII)CH-C(PII)
23 52	0.120439	(Pn)C-HC(Pn)
20 55	0.120400	(Ph)CH-C(Ph)
12 34	0.117854	(methin)C-HC(sal)
2 44	0.117782	(sal)CH-C(methin)
20 50	0.113147	(Ph)CC(Ph)
18 52	0.113082	(Ph)CC(Ph)
13 33	0.111814	(Ph)CC(sal)
1 45	0.111773	(sal)CC(Ph)
30 33	0.104050	NC(sal)
1 62	0.104023	(sal)CN
14 40	0.103307	(sal)CC(Ph)
8 46	0.103301	(Ph)CC(sal)
8 47	0 101304	(sal)C H-C(Ph)
15 40	0.101225	(Ph)C-H $C(sal)$
21 54	0.005140	(Ph)C H C(Ph)
21 54	0.095104	$(\Pi)C-\PiC(\Pi)$
22 55	0.093104	(PII)CH-C(PII)
23 50	0.094665	(Pn)C-HC(Pn)
18 55	0.094569	(Ph)CH-C(Ph)
22 50	0.089953	(Ph)CC(Ph)
18 54	0.089914	(Ph)CC(Ph)
2 46	0.088889	(Ph)CC(sal)
14 34	0.088872	(sal)CC(Ph)
9 63	0.086210	(imin)CO
31 41	0.086188	OC(sal)
23 54	0.077541	(Ph)C-HC(Ph)
22 55	0.077529	(Ph)CH-C(Ph)
22 45	0.071673	(Ph)C C(Ph)
13 54	0.071616	(Ph)C C(Ph)
21 51	0.070256	$(Ph)C-H H_C(Ph)$
	0.070230	$(I II) \cup (I II) \cup (I II)$ $(Db) \cap U \cup U \cap (Db)$
	0.070212	$(\Pi)\cup \Pi \dots \Pi \cup (\Pi)$
	0.001049	(rn)UN
30 45	0.061640	NC(Ph)

3 47	0.054666	(sal)CH-C(Ph)
Sum	17.56	

^a Fragment 1 is the ligand with atom numbers 1-31, fragment 2 the ligand with atom numbers 33-63. For atom

numbering see the following graph:

Table S7. Sum of related IBSIW indices for each atom in the fragments in the Δ -ZnS1 and Λ -ZnS1 diastereomers and the largest differences between Δ -ZnS1 and Λ -ZnS1.

	Δ -ZnS1		Λ-ZnS1		
	Frag 1	Frag 2	Frag 1	Frag2	difference
atom # in	IBSIW	IBSIW	IBSIW	IBSIW	Δ -ZnS1 –
Frag1, Frag2 ^a	[a.u./Å ²]	[a.u./Å ²]	[a.u./Å ²]	[a.u./Å ²]	Λ-ZnS1 ^b
O 31, 63	5.016727	5.017636	4.312783	4.313428	0.70
(Ph)H 15, 47	3.067974	3.065524	1.371806	1.373200	1.70
(CH3)H 27, 59	2.587759	2.587120	0.018957	0.006196	2.57
(sal)C 1, 33	2.433725	2.433980	1.500074	1.499688	0.93
(Ph)C 14, 46	1.855479	1.855743	0.935916	0.936427	0.92
N 30, 62	1.497890	1.497993	1.457919	1.457443	
(Ph)C 20, 52	1.288187	1.288282	1.462662	1.462719	
(Ph)C 22, 54	1.184627	1.184643	0.946608	0.946410	
(sal)C 8, 40	1.025359	1.025272	0.428478	0.428454	0.60
(Ph)H, 21, 53	0.919401	0.920912	1.286846	1.286424	
(Ph)C 13, 45	0.859861	0.859959	0.754145	0.754100	
Cl 28, 60	0.832169	0.831889	0.601851	0.601769	
(Ph)C 16, 48	0.817376	0.817564	0.307468	0.307693	0.51
(Ph)H 23, 55	0.782842	0.783780	0.532347	0.531955	

(imin)C 9, 41	0.780965	0.781015	0.354005	0.353962	
(sal)C 2, 34	0.760858	0.760285	0.570532	0.570474	
(CH3)C 24, 56	0.689197	0.689216	0.060345	0.060316	0.63
(methin)C 11, 43	0.602369	0.602475	1.102581	1.102276	-0.50
(Ph)C 18, 50	0.513108	0.512874	0.508766	0.509105	
(Ph)H 17, 49	0.491622	0.491852	0.090505	0.090587	
(sal)C 6, 38	0.250039	0.249909	0.079437	0.079421	
(sal)C 3, 35	0.139626	0.139509	0.101795	0.101775	
(Ph)H 19, 51	0.118323	0.118299	0.157192	0.157271	
(imin)H 10, 42	0.105191	0.105189	0.028772	0.028770	
(sal)C 5, 37	0.099346	0.099244	0.043575	0.043571	
(CH3)H 25, 57	0.096290	0.096227	0.006196	0.016851	
(CH3)H 26, 58	0.089178	0.089185	0.016861	0.018938	
(methin)H 12, 44	0.062414	0.062402	2.468030	2.467230	-2.41
(sal)H 7, 39	0.051562	0.051522	0.010741	0.010739	
(sal)H 4, 36	0.015974	0.015954	0.014845	0.014846	
Cl 29, 61	0.007498	0.007484	0.002483	0.002483	
SUM (column)	29.04	29.04	21.53	21.53	5.65
		difference: $29.04 - 21.53 = 7.51$			

^a Fragment 1 is the ligand with atom numbers 1-31, fragment 2 the ligand with atom numbers 33-63. See the graphs to Table S5 and Table S6 for atom numbering.

^b Rounded values and average from the differences between the Fragments 1 and the Fragments 2, respectively.

Table S8. Selected inter-fragment interactions as IBSIW index with the largest differences between Δ -ZnS1 and Λ -ZnS1 (cf. Table S7).^a

a)

atom # 15 (resp. atom # 47) in Δ-ZnS1		atom # 15 (resp. atom # 47) in Λ-ZnS1			
15 33	0.997136	(Ph)C-HC(sal)	15 33	0.392374	(Ph)C-HC(sal)
15 63	0.906876	(Ph)C-HO	15 63	0.267390	(Ph)C-HO
15 34	0.350018	(Ph)C-HC(sal)	15 34	0.256768	(Ph)C-HC(sal)
15 40	0.302054	(Ph)C-HC(sal)	15 60	0.189046	(Ph)C-HCl
15 60	0.160718	(Ph)C-HCl	15 40	0.101225	(Ph)C-HC(sal)
15 41	0.103609	(Ph)C-HC(imin)			
Sum	2.82		Sum	1.21	

b)

atom # 1 (resp. atom # 33) in Δ-ZnS1			atom # 15 (resp. atom # 33) in Λ-ZnS1			
1 47	0.996316	(sal)CH-C(Ph)	1 47	0.392874	(sal)CH-C(Ph)	
1 46	0.445425	(sal)CC(Ph)	1 44	0.349489	(sal)CH-C(methin)	
1 59	0.345639	(sal)CH-C(CH3)	1 46	0.240414	(sal)CC(Ph)	

1 48	0.113776	(sal)CC(Ph)	1 43	0.150317	(sal)CC(methin)
			1 45	0.111773	(sal)CC(Ph)
			1 62	0.104023	(sal)CN
Sum	2.82		Sum	1.35	

c)

atom # 14 (resp. atom # 46) in Δ-ZnS1		atom # 14 (resp. atom # 46) in Λ-ZnS1			
14 33	0.445102	(Ph)CC(sal)	14 33	0.240302	(Ph)CC(sal)
14 63	0.429632	(Ph)CO	14 63	0.197005	(Ph)CO
14 40	0.255479	(Ph)CC(sal)	14 40	0.103307	(Ph)CC(sal)
14 41	0.183581	(Ph)CC(imin)	14 34	0.088872	(Ph)CC(sal)
14 62	0.142815	(Ph)CN			
Sum	1.46		Sum	0.63	

^a Listed are the inter-atom interaction between the two ligand fragments from the 70 strongest interactions (highest IBSIW indices) in Table S5 for Δ -ZnS1 and Table S6 for Λ -ZnS1. See the graphs to Table S5 and Table S6 for atom numbering.

REFERENCES

(1) H. D. Flack, M. Sadki, A. L. Thompson and D. J. Watkin, Acta Crystallogr., Sect. A: Fundam.

Crystallogr., 2011, 67, 21.

(2) H. D. Flack and G. Bernardinelli, *Chirality*, 2008, 20, 681.

(3) H. D. Flack and G. Bernardinelli, Acta Crystallogr., Sect. A: Fundam. Crystallogr., 1999, 55, 908.

(4) H. Flack, Acta Crystallogr., Sect. A: Fundam. Crystallogr., 1983, 39, 876.