Supporting Information

Spherical V-doped Nickel-iron LDH Decorated on Ni₃S₂ as High-efficiency Electrocatalyst for Oxygen Evolution Reaction

Jie Bai^a, Tianning Zhou^a, Yihao Gao^a, Meilin Zhang^a, Xiaofei Jing^{b,*}, Yaqiong Gong^{a,b,*}

^a School of Chemical Engineering and Technology, North University of China, Taiyuan, 030051, P. R. China

^b Northeast Normal University, Key Lab Polyoxometalate Sci, Minist Educ, Changchun, 130024, P. R. China

* Email: jingxf100@nenu.edu.cn (Xiaofei Jing); gyq@nuc.edu.cn (Yaqiong Gong)

Fig. S1. SEM images of commercial Ni foam at low and high magnifications.

Fig. S2. Element composition diagram corresponding to EDX spectrum

Table S1 Elemental composition of V, Fe, Ni and S determined by EDX spectrum

Element	V	Fe	Ni	S	0
Atom%	5.85	2.75	6.35	0.02	85.03

Table S2 XPS quantization ratio of three valence states V

Name	V ³⁺	V^{4+}	V ⁵⁺
%content	26.93	49.96	23.11

Fig. S3. comparison of overpotential required at 10 mA cm⁻² and 100 mA cm⁻²

Fig. S4. OER polarization curves of V-NiFe LDH@Ni₃S₂ and V-NiFe LDH.

Fig. S5. OER polarization curves of V-NiFe LDH@Ni₃S₂-3h, V-NiFe LDH@Ni₃S₂-6h, and V-NiFe LDH@Ni₃S₂-12h.

Electrocatalysts	Overpotential (mV)	Tafel slope	Electrolyte	Reference
	at 10 mA cm ⁻²	(mV dec ⁻¹)		
V-NiFe-LDH@Ni ₃ S ₂	178	27.31	1M KOH	This work
NiFe LDH/NF	219	33	1M KOH	J. Mater. Chem. A, 2019,
				7, 22889.
Pt-NiFe LDH	195	31.3	1M KOH	Nano Energy 2017, 39, 30-
				43.
Ni ₅ P ₄ /Ni ₅ P ₂ /NiFe	197	46.6	1M KOH	J. Mater. Chem. A. 2018,
LDH				6, 13619-13623.
Cu@NiFe LDH	199	27.8	1M KOH	Enery Environ. Sci. 2017,
				10, 1820-1827.
NiFe LDH/(NiFe)S _x	210	105	1M KOH	Electrochim. Acta, 2020,
				348, 136339.
NiFe-	220	48.6	1M KOH	Adv. Funct. Mater. 2018,
LDH@NiCoP/NF				28, 1706847.
NiFeRu LDH/NF	225	32.4	1M KOH	Adv. Mater. 2018, 30,
				1706279.
Cu@CoFe LDH	240	44.4	1M KOH	Nano Energy 2017, 41,
				327-336.
CoSe/NiFe LDH	250	57	1M KOH	Enery Environ. Sci. 2016,
				9,478-483.
NiO@NiFe-LDH	256	72	1M KOH	ACS Sustainable Chem.
				Eng. 2019, 7, 2327.
NiCo/NiCoOx	278	47.5	1M KOH	Electrochim. Acta 2017,
@FeOOH				257, 1-8.
Ni ₂ P/Ni ₃ S ₂ /NF	210	62	1M KOH	Nano Energy 2018, 51, 26-
				36.
MoxW _{1-x} S ₂ @	285	90	1M KOH	ACS Appl. Mater.
Ni ₃ S ₂ /NF				Interfaces 2017, 9, 26066-
				26076.

Table S3. Comparison of the OER performance for the V-NiFe LDH@Ni_3S_2 catalyst

Fig. S6. Cyclic voltammograms at different scan rates (from 10 mV/s to 50 mV/s with an interval rate of 10 mV/s). (a) NF, (a) Ni₃S₂ (b) V-NiFe LDH@Ni₃S₂, and (c) NiFe-LDH@Ni₃S₂, and (d) NiV-LDH@Ni₃S₂.

Fig. S7. XRD patterns

Fig. S8. SEM images of V-NiFe LDH@Ni₃S₂ (anode for OER) after 20 hours OER stability measurements with other reported OER electrocatalysts.