Supporting Information

Two new rare-earth borates $Sr_2Tb_3B_{27-\delta}O_{46}$ and $Ba_2Eu_3B_{27-\delta}O_{46}$ ($\delta = 2/3$): Syntheses, crystal structures, and luminescent properties

Xuean Chen^{a,*}, Jinyuan Zhang^a, Weiqiang Xiao^b, and Xiaoyan Song^a

^aFaculty of Materials and Manufacturing, Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Beijing University of Technology, 100124 Beijing, China. Email:xueanchen@bjut.edu.cn

^bBeijing Key Laboratory of Microstructure and Property of Solids, Beijing University of Technology, 100124 Beijing, China

Content

- 1. **Table S1** Atomic coordinates, site occupancies, and equivalent isotropic displacement parameters (Å²) for Sr₂Tb₃B_{27- δ}O₄₆ and Ba₂Eu₃B_{27- δ}O₄₆ ($\delta = 2/3$).
- 2. **Table S2** Selected bond lengths (Å) for $Sr_2Tb_3B_{27-\delta}O_{46}$ ($\delta = 2/3$).
- 3. Table S3 Selected bond angles (°) for $Sr_2Tb_3B_{27-\delta}O_{46}$ ($\delta = 2/3$).
- 4. **Table S4** Selected bond lengths (Å) for $Ba_2Eu_3B_{27-\delta}O_{46}$ ($\delta = 2/3$).
- 5. Table S5 Selected bond angles (°) for $Ba_2Eu_3B_{27-\delta}O_{46}$ ($\delta = 2/3$).
- 6. **Table S6** SHG intensities of the Sr₂Tb₃B_{27- δ}O₄₆ and Ba₂Eu₃B_{27- δ}O₄₆ ($\delta = 2/3$) samples compared with the KDP reference.
- Fig. S1 Crystal structure of Ba₆Bi₉B₇₉O₁₃₈ projected along the [100] direction (a), the [B₂₇O₅₈]³⁵⁻ polyborate anionic group (b), a single layer [B₂₇O₄₆]_n¹¹ⁿ⁻ viewed along the [001] direction (c), and the local environment of each Ba²⁺ and Bi³⁺ site (the numbers correspond to the oxygen atom designations) (d).
- 8. **Fig. S2** Comparison of the observed XRD pattern of $Ba_2Eu_3B_{27-\delta}O_{46}$ ($\delta = 2/3$) (presented in this work) with that of "BaEuB₉O₁₆" (cited from ref. 21).
- 9. Fig. S3 XRD patterns of $Sr_2Tb_3B_{27-\delta}O_{46}$ ($\delta = 2/3$) under different temperatures.
- 10. Fig. S4 XRD patterns of $Ba_2Eu_3B_{27-\delta}O_{46}$ ($\delta = 2/3$) under different temperatures.
- Fig. S5 FE-SEM images, typical EDX spectra, and elemental mapping of the Sr₂Tb₃B_{27-δ}O₄₆ (a) and Ba₂Eu₃B_{27-δ}O₄₆ (b) crystals.
- 12. Fig. S6 Survey (a) and core-level spectra of Sr 3d (b), Ba 3d (c), Tb 3d (d), Eu 3d (e) B 1s (f), and O 1s (g) for $Sr_2Tb_3B_{27-\delta}O_{46}$ (top) and $Ba_2Eu_3B_{27-\delta}O_{46}$ (bottom).

$ \text{ argmation of the parameters (A1) for Sr_2 103 D_{2/-3} O_{46} and Du_2 Du_3 D_{2/-3} O_{46} (0 - 2) $	<i>, , , , , , , , , , , , , , , , , , , </i>
Atoms Wyck Site X Y Z Occupancies	Ueq
sites symmetry	1
Sr ₂ Tb ₃ B ₂₇₋₈ O ₄₆	
Sr1 3a C ₃ 0.0000 0.0000 0.07410(9) 1	0.0253(3)
Sr2 3a C ₃ 0.0000 0.0000 0.92588(9) 1	0.0257(3)
Tb1 3a C ₃ 0.0000 0.0000 0.166330(16) 1	0.00938(11)
Tb2 $3a$ C ₃ 0.0000 0.0000 0.834530(11) 1	0.0095(2)
Tb3 $3a$ C ₃ 0.0000 0.0000 0.498865(14) 1	0.00849(17)
B1 9b C1 $-0.3358(13)$ $0.0012(13)$ $0.8771(5)$ 1	0.00019(17)
$B_2 = 9b$ C $0.3370(13) = 0.0012(13) = 0.8771(5) = 1$	0.0110(12) 0.0112(13)
$B_3 = 9b = C_1 = -0.0007(13) = 0.3260(14) = 0.1228(6) = 1$	0.0112(13) 0.0124(12)
$B_{4} = 0b C_{1} = -0.0007(15) = -0.5309(14) = 0.1220(0) = 1$	0.0134(13)
B5 0b C $(100, -0.3380(13), 0.1228(0))$ 1 B5 0b C $(100, -0.3380(13), 0.1228(0))$ 1	0.0141(15)
$B_{2} = \frac{1}{20} + \frac$	0.0164(11)
$B_0 = 90$ C ₁ = -0.0041(18) = -0.5011(17) = 0.075(2) = 1	0.0180(11)
$B_1 = 96 C_1 = -0.399(2) = 0.009(2) = 0.9737(3) = 1$	0.0339(16)
B8 9b C_1 -0.012(2) -0.412(2) 0.0258(3) 1	0.0332(15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0316(16)
O_1 S_3 C_3 0.0000 0.0000 $-0.0067(3)$ 1	0.0296(12)
$O_2 \qquad 96 \qquad C_1 \qquad -0.0025(9) \qquad -0.3475(10) \qquad 0.0913(3) \qquad 1$	0.0145(11)
O3 9b C_1 0.3444(9) -0.0018(9) 0.9085(3) 1	0.0141(11)
O4 9b C_1 -0.3480(10) -0.0016(9) 0.9083(3) 1	0.0144(11)
O5 9b C_1 -0.3452(10) -0.3455(9) 0.0912(3) 1	0.0133(11)
O6 9b C_1 -0.1327(8) -0.2651(8) 0.53072(11) 1	0.0100(9)
O7 9b C ₁ $-0.1299(9)$ $0.1276(9)$ $0.86793(11)$ 1	0.0137(9)
O8 9b C1 $-0.5278(13) -0.0514(12) 0.9999(2)$ 1	0.0421(15)
O9 9b C1 -0.3980(8) -0.1991(8) 0.86490(11) 1	0.0121(13) 0.0122(8)
010 9b C ₁ $0.0274(13)$ $0.4886(13)$ $0.0480(19)$ 1	0.0122(0) 0.0330(13)
011 9b C, $-0.2424(15) - 0.066(14) - 0.2727(10) - 1$	0.0330(13)
O_1 O_2 O_1 $O_2 O_2 O_1 O_1 O_1 O_1 O_1 O_2 O_2 O_1 O_1 O_1 O_1 O_2 O_2 O_1 O_1 O_1 O_1 O_1 O_1 O_1 O_1 O_1 O_1$	0.0401(13) 0.0250(14)
C_1 C_1 C_2 C_1 C_2 C_3	0.0330(14)
$C_1 = -0.0011(14) -0.2455(14) -0.2655(19) = 1$	0.0432(14)
$C_1 = 0.2017(9) = -0.1990(8) = 0.13404(11) = 1$	0.0133(8)
$C_1 = -0.1279(9) = -0.2574(8) = 0.13218(12) = 1$	0.0144(8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0124(8)
$Ba_2Eu_3B_{27-\delta}O_{46}$	0.01.410(10)
$Ba_1 = 3a = C_3 = 1.0000 = 1.0000 = 0.92914(5) = 1$	0.01412(18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.01366(17)
Eul $3a$ C_3 1.0000 1.0000 $0.833765(18)$ 1	0.00466(13)
Eu2 $3a$ C_3 1.0000 1.0000 $0.165295(14)$ 1	0.00511(18)
Eu3 $3a$ C_3 1.0000 1.0000 $0.50128(2)$ 1	0.00462(14)
B1 9b C_1 1.3371(15) 0.9990(15) 0.1228(5) 1	0.0077(11)
B2 9b C_1 0.6620(15) 0.9999(14) 0.1227(5) 1	0.0073(12)
B3 9b C_1 1.0021(15) 1.3372(15) 0.8772(5) 1	0.0088(12)
B4 9b C_1 1.3354(15) 1.3368(15) 0.8772(5) 1	0.0087(12)
B5 9b C_1 1.5011(18) 1.0016(18) 0.0780(2) 1	0.0122(11)
B6 9b C_1 1.0011(18) 1.5006(18) 0.9227(2) 1	0.0131(12)
B7 9b C_1 1.4172(17) 0.9939(18) 0.0256(2) 1	0.0258(14)
B8 9b C_1 1.0031(18) 1.4217(17) 0.9749(2) 1	0.0250(11) 0.0252(13)
$B_{2} = 9b$ $C_{1} = 1.1622(19) \pm 1.0000 = 0.9090(3) = 7/9$	0.0232(15) 0.0240(15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0240(13)
$O_2 = O_1 = O_2 = O_1 = O_2 = O_1 = O_2 $	0.0133(0)
C_2 C_1 C_1 C_2 C_1 C_2 C_2 C_3	0.0113(0)
$C_1 = 0.0520(11) = 1.0009(11) = 0.0916(3) = 1$	0.0114(6)
$C_1 = \frac{1.500(11)}{1.040(12)} = \frac{1.000(11)}{1.0023(11)} = \frac{0.000(10)}{0.0018(3)} = \frac{1.0000(10)}{1.0000(10)}$	0.0110(6)
$C_{1} = \frac{1.3408(12)}{1.3471(12)} = \frac{1.3471(12)}{0.9086(3)} = \frac{1}{10}$	0.0116(6)
C_{1}^{0} C_{1}^{0} C_{1}^{0} C_{1}^{0} C_{2}^{0} C_{2}^{0} C_{1}^{0} C_{2}^{0} C_{2	0.0102(6)
$O_1 = 0$ $G_2 = 0$ $O_1 = 0$ $O_1 = 0$ $O_2 $	0.0123(6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0207(7)
O9 9b C_1 1.3960(8) 1.1982(8) 0.13527(12) 1	0.0113(6)
O10 9b C_1 0.9612(11) 1.4821(10) 0.95172(15) 1	0.0192(7)
Oll 9b C_1 1.2515(11) 0.9963(10) 0.02567(15) 1	0.0225(7)
	0.0220())
O12 9b C_1 1.5150(10) 1.0325(11) 0.04831(15) 1	0.0203(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0203(7) 0.0213(7)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0203(7) 0.0213(7) 0.0113(6)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0203(7) 0.0213(7) 0.0113(6) 0.0118(6)

Table S1 Atomic coordinates, site occupancies, and equivalent isotropic displacement parameters (Å²) for Sr₂Tb₂B_{27 s}O₄₆ and Ba₂Eu₂B_{27 s}O₄₆ ($\delta = 2/3$).

Note: U_{eq} is defined as one third of the trace of the orthogonalized U tensor.

Table 52 Beleetee	i oolia lenguis (11	$\frac{101}{512103}$	(0 2/3).
Sr1-O5 × 3	2.790(8)	B3-O16	1.475(15)
$Sr1-O2 \times 3$	2.798(7)	B3-O14	1.481(14)
Sr1-O13 × 3	2.906(10)	Mean	1.471
Mean	2.831	B4-O16	1.463(15)
Sr2-O3 × 3	2.794(8)	B4-O5	1.464(29)
$Sr2-O4 \times 3$	2.810(7)	B4-O14	1.473(14)
Sr2-O11 × 3	2.916(10)	B4-O15	1.478(13)
Mean	2.840	Mean	1.470
Tb1-O9 × 3	2.332(5)	B5-O4	1.334(13)
Tb1-O15 × 3	2.343(6)	B5-O3	1.366(14)
Mean	2.338	B5-O12	1.385(11)
Tb2-O7 × 3	2.320(5)	Mean	1.362
Tb2-O16 × 3	2.324(5)	B6-O2	1.345(14)
Mean	2.322	B6-O5	1.363(14)
Tb3-O14 × 3	2.305(5)	B6-O10	1.384(12)
Tb3-O6 × 3	2.312(5)	Mean	1.364
Mean	2.309	B7-O11	1.246(19)
B1-O4	1.451(28)	B7-O12	1.283(15)
B1-O7	1.457(12)	B7-O8	1.490(15)
B1-O6	1.475(13)	Mean	1.340
B1-O9	1.487(14)	B8-O13	1.248(18)
Mean	1.468	B8-O10	1.302(15)
B2-O3	1.454(29)	B8-O8	1.475(16)
B2-O6	1.471(14)	Mean	1.342
B2-O9	1.473(14)	B9-O1	1.204(17)
B2-O7	1.490(12)	B9-O13	1.399(18)
Mean	1.472	B9-O11	1.464(18)
B3-O2	1.464(31)	Mean	1.356
B3-O15	1.465(13)		

Table S2 Selected bond lengths (Å) for $Sr_2Tb_3B_{27-\delta}O_{46}$ ($\delta = 2/3$).

	11 1 1 (0)		2 (2)
Table S3 Selected	bond angles $\binom{0}{2}$	$\frac{\text{for } \text{Sr}_2 \text{Tb}_3 \text{B}_{27-\delta} \text{O}_{46} (\delta)}{22 \text{ D}_2 \text{ O}_{16}}$	5 = 2/3).
$09-161-09 \times 3$	84.04(19)	O2-B3-O16	111.6(11)
09-161-015 × 3	81.91(19)	O2-B3-O14	111.6(12)
O9-Tb1-O15 × 3	135.39(18)	O15-B3-O14	106.6(11)
O9-Tb1-O15 × 3	135.68(19)	O16-B3-O14	106.9(12)
O15-Tb1-O15 × 3	79.3(2)	O15-B3-O16	110.9(12)
		Mean	109.5
$O7-Tb2-O7 \times 3$	80.3(2)	O5-B4-O15	109.3(12)
O7-Tb2-O16 × 3	81.26(19)	O5-B4-O14	110.9(11)
O7-Tb2-O16 × 3	135.1(2)	O16-B4-O14	106.4(12)
O7-Tb2-O16 × 3	135.6(2)	O16-B4-O15	111.0(12)
O16-Tb2-O16 × 3	84.0(2)	O16-B4-O5	112.8(11)
		O14-B4-O15	106.2(11)
O14-Tb3-O14 × 3	84.2(2)	Mean	109.4
O14-Tb3-O6 × 3	78.99(19)	O3-B5-O12	117.0(10)
O14-Tb3-O6 × 3	134.4(2)	O4-B5-O12	118.4(10)
O14-Tb3-O6 × 3	134.8(2)	O4-B5-O3	123.9(10)
O6-Tb3-O6 × 3	83.6(2)	Mean	119.8
		O2-B6-O10	119.0(11)
O4-B1-O7	110.0(11)	O2-B6-O5	123.8(11)
O4-B1-O6	111.4(10)	O5-B6-O10	116.2(10)
O4-B1-O9	112.3(10)	Mean	119.7
O6-B1-O9	106.8(11)	O11-B7-O8	119.6(11)
O7-B1-O6	110.8(11)	O11-B7-O12	124.8(12)
O7-B1-O9	105.4(10)	O12-B7-O8	107.7(11)
Mean	109.5	Mean	117.4
O3-B2-O7	108.5(11)	O10-B8-O8	107.1(11)
O3-B2-O6	112.2(10)	O13-B8-O8	121.0(11)
O3-B2-O9	113.0(10)	O13-B8-O10	122.4(11)
O6-B2-O9	107.6(12)	Mean	116.8
O6-B2-O7	109.8(11)	O1-B9-O11	102.6(12)
O9-B2-O7	105.5(10)	O1-B9-O13	140.0(15)
Mean	109.4	O13-B9-O11	117.3(13)
O2-B3-O15	109.2(12)	Mean	120.0

Table S4 S	elected bond lengths ((A) for Ba_2Eu_3E	$S_{27-\delta}O_{46} \ (\delta = 2/3).$
Ba1-O5 × 3	2.868(9)	B3-O15	1.459(13)
Ba1-O2 × 3	2.877(9)	B3-O16	1.478(14)
Ba1-O13 × 3	2.879(7)	B3-O14	1.482(14)
Mean	2.875	Mean	1.469
Ba2-O3 × 3	2.874(8)	B4-O5	1.464(24)
Ba2-O4 \times 3	2.887(8)	B4-O15	1.470(13)
Ba2-O11 × 3	2.894(7)	B4-O16	1.476(14)
Ba2-O1	3.051(10)	B4-O14	1.480(14)
Mean	2.902	Mean	1.473
Eu1-O9 × 3	2.352(6)	B5-O4	1.341(14)
Eu1-O15 × 3	2.368(6)	B5-O3	1.342(14)
Mean	2.360	B5-O12	1.398(11)
Eu2-O7 × 3	2.351(6)	Mean	1.360
Eu2-O16 × 3	2.357(6)	B6-O5	1.361(14)
Mean	2.354	B6-O2	1.362(14)
Eu3-O14 × 3	2.331(6)	B6-O10	1.376(11)
Eu3-O6 × 3	2.348(6)	Mean	1.366
Mean	2.340	B7-O12	1.250(13)
B1-O4	1.442(24)	B7-O11	1.301(15)
B1-O7	1.468(13)	B7-O8	1.392(13)
B1-O6	1.472(14)	Mean	1.314
B1-O9	1.500(14)	B8-O10	1.282(13)
Mean	1.471	B8-O13	1.307(15)
B2-O3	1.449(24)	B8-O8	1.371(13)
B2-O6	1.468(14)	Mean	1.320
B2-O7	1.481(13)	B9-O1	1.292(15)
B2-O9	1.492(14)	B9-O13	1.381(16)
Mean	1.473	B9-O11	1.395(16)
B3-O2	1.455(25)	Mean	1.356

Table S4 Selected bond lengths (Å) for $Ba_2Eu_3B_{27-\delta}O_{46}$ ($\delta = 2/3$).

$O9-Eu1-O9 \times 3$ $84.6(2)$ $O2-B3-O16$ $111.4(10)$ $O9-Eu1-O15 \times 3$ $80.8(2)$ $O2-B3-O14$ $111.5(11)$ $O9-Eu1-O15 \times 3$ $135.0(2)$ $O15-B3-O14$ $106.4(10)$ $O9-Eu1-O15 \times 3$ $135.3(2)$ $O15-B3-O16$ $110.9(11)$ $O15-Eu1-O15 \times 3$ $80.4(2)$ $O16-B3-O14$ $106.0(11)$ $Mean$ 109.4 $O7-Eu2-O7 \times 3$ $81.4(2)$ $O5-B4-O15$ $110.2(11)$ $O7-Eu2-O16 \times 3$ $80.2(2)$ $O5-B4-O14$ $111.3(10)$ $O7-Eu2-O16 \times 3$ $134.9(2)$ $O5-B4-O14$ $111.7(11)$ $O7-Eu2-O16 \times 3$ $135.1(2)$ $O15-B4-O14$ $106.6(10)$ $O16-Eu2-O16 \times 3$ $84.6(2)$ $O15-B4-O14$ $106.6(10)$ $O16-Eu2-O16 \times 3$ $84.6(2)$ $O15-B4-O14$ $106.6(10)$	Table 55 Selected	bond angles ()	$10f Ba_2 Eu_3 B_{27-\delta} O_{46} (0)$	-2/3).
$O9-Eu1-O15 \times 3$ $80.8(2)$ $O2-B3-O14$ $111.5(11)$ $O9-Eu1-O15 \times 3$ $135.0(2)$ $O15-B3-O14$ $106.4(10)$ $O9-Eu1-O15 \times 3$ $135.3(2)$ $O15-B3-O16$ $110.9(11)$ $O15-Eu1-O15 \times 3$ $80.4(2)$ $O16-B3-O14$ $106.0(11)$ $Mean$ 109.4 $07-Eu2-O7 \times 3$ $81.4(2)$ $O5-B4-O15$ $110.2(11)$ $O7-Eu2-O16 \times 3$ $80.2(2)$ $O5-B4-O14$ $111.3(10)$ $O7-Eu2-O16 \times 3$ $134.9(2)$ $O5-B4-O16$ $111.7(11)$ $O7-Eu2-O16 \times 3$ $135.1(2)$ $O15-B4-O14$ $106.6(10)$ $O16-Eu2-O16 \times 3$ $84.6(2)$ $O15-B4-O14$ $106.6(10)$ $O16-Eu2-O16 \times 3$ $84.6(2)$ $O15-B4-O14$ $106.3(11)$	O9-Eu1-O9 × 3	84.6(2)	O2-B3-O16	111.4(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O9-Eu1-O15 × 3	80.8(2)	O2-B3-O14	111.5(11)
O9-Eu1-O15 \times 3135.3(2)O15-B3-O16110.9(11)O15-Eu1-O15 \times 380.4(2)O16-B3-O14106.0(11)Mean109.4O7-Eu2-O7 \times 381.4(2)O5-B4-O15110.2(11)O7-Eu2-O16 \times 380.2(2)O5-B4-O14111.3(10)O7-Eu2-O16 \times 3134.9(2)O5-B4-O16111.7(11)O7-Eu2-O16 \times 3135.1(2)O15-B4-O14106.6(10)O16-Eu2-O16 \times 384.6(2)O15-B4-O14106.3(11)	O9-Eu1-O15 × 3	135.0(2)	O15-B3-O14	106.4(10)
O15-Eu1-O15 \times 380.4(2)O16-B3-O14106.0(11)Mean109.4O7-Eu2-O7 \times 381.4(2)O5-B4-O15110.2(11)O7-Eu2-O16 \times 380.2(2)O5-B4-O14111.3(10)O7-Eu2-O16 \times 3134.9(2)O5-B4-O16111.7(11)O7-Eu2-O16 \times 3135.1(2)O15-B4-O14106.6(10)O16-Eu2-O16 \times 384.6(2)O15-B4-O16110.6(10)O16-Eu2-O16 \times 384.6(2)O15-B4-O14106.3(11)	O9-Eu1-O15 × 3	135.3(2)	O15-B3-O16	110.9(11)
Mean109.4O7-Eu2-O7 \times 381.4(2)O5-B4-O15110.2(11)O7-Eu2-O16 \times 380.2(2)O5-B4-O14111.3(10)O7-Eu2-O16 \times 3134.9(2)O5-B4-O16111.7(11)O7-Eu2-O16 \times 3135.1(2)O15-B4-O14106.6(10)O16-Eu2-O16 \times 384.6(2)O15-B4-O16110.6(10)O16-B4-O14106.3(11)016-B4-O14106.3(11)	O15-Eu1-O15 × 3	80.4(2)	O16-B3-O14	106.0(11)
$O7-Eu2-O7 \times 3$ $81.4(2)$ $O5-B4-O15$ $110.2(11)$ $O7-Eu2-O16 \times 3$ $80.2(2)$ $O5-B4-O14$ $111.3(10)$ $O7-Eu2-O16 \times 3$ $134.9(2)$ $O5-B4-O16$ $111.7(11)$ $O7-Eu2-O16 \times 3$ $135.1(2)$ $O15-B4-O14$ $106.6(10)$ $O16-Eu2-O16 \times 3$ $84.6(2)$ $O15-B4-O16$ $110.6(10)$ $O16-B4-O14$ $106.3(11)$			Mean	109.4
$O7-Eu2-O16 \times 3$ $80.2(2)$ $O5-B4-O14$ $111.3(10)$ $O7-Eu2-O16 \times 3$ $134.9(2)$ $O5-B4-O16$ $111.7(11)$ $O7-Eu2-O16 \times 3$ $135.1(2)$ $O15-B4-O14$ $106.6(10)$ $O16-Eu2-O16 \times 3$ $84.6(2)$ $O15-B4-O16$ $110.6(10)$ $O16-Eu2-O16 \times 3$ $84.6(2)$ $O16-B4-O14$ $106.3(11)$	O7-Eu2-O7 × 3	81.4(2)	O5-B4-O15	110.2(11)
O7-Eu2-O16 × 3 134.9(2) O5-B4-O16 111.7(11) O7-Eu2-O16 × 3 135.1(2) O15-B4-O14 106.6(10) O16-Eu2-O16 × 3 84.6(2) O15-B4-O16 110.6(10) O16-B4-O14 106.3(11)	O7-Eu2-O16 × 3	80.2(2)	O5-B4-O14	111.3(10)
O7-Eu2-O16 × 3 135.1(2) O15-B4-O14 106.6(10) O16-Eu2-O16 × 3 84.6(2) O15-B4-O16 110.6(10) O16-B4-O14 106.3(11)	O7-Eu2-O16 × 3	134.9(2)	O5-B4-O16	111.7(11)
O16-Eu2-O16 × 3 84.6(2) O15-B4-O16 110.6(10) O16-B4-O14 106 3(11)	O7-Eu2-O16 × 3	135.1(2)	O15-B4-O14	106.6(10)
O16-B4-O14 106 3(11)	O16-Eu2-O16 × 3	84.6(2)	O15-B4-O16	110.6(10)
			O16-B4-O14	106.3(11)
O14-Eu3-O14 × 3 85.2(2) Mean 109.5	O14-Eu3-O14 × 3	85.2(2)	Mean	109.5
O14-Eu3-O6 × 3 78.0(2) O4-B5-O12 117.7(10)	O14-Eu3-O6 × 3	78.0(2)	O4-B5-O12	117.7(10)
O14-Eu3-O6 × 3 134.2(2) O4-B5-O3 123.4(10)	O14-Eu3-O6 × 3	134.2(2)	O4-B5-O3	123.4(10)
O14-Eu3-O6 × 3 134.3(2) O3-B5-O12 118.3(10)	O14-Eu3-O6 × 3	134.3(2)	O3-B5-O12	118.3(10)
O6-Eu3-O6× 3 84.0(2) Mean 119.8	O6-Eu3-O6× 3	84.0(2)	Mean	119.8
O5-B6-O10 117.7(10)			O5-B6-O10	117.7(10)
O4-B1-O7 110.4(11) O5-B6-O2 122.0(10)	O4-B1-O7	110.4(11)	O5-B6-O2	122.0(10)
O4-B1-O6 111.3(10) O2-B6-O10 119.1(10)	O4-B1-O6	111.3(10)	O2-B6-O10	119.1(10)
O4-B1-O9 112.8(10) Mean 119.6	O4-B1-O9	112.8(10)	Mean	119.6
O7-B1-O9 105.3(10) O12-B7-O8 116.5(10)	O7-B1-O9	105.3(10)	O12-B7-O8	116.5(10)
O7-B1-O6 110.3(11) O12-B7-O11 118.9(10)	O7-B1-O6	110.3(11)	O12-B7-O11	118.9(10)
O6-B1-O9 106.5(11) O11-B7-O8 117.1(10)	O6-B1-O9	106.5(11)	O11-B7-O8	117.1(10)
Mean 109.4 Mean 117.5	Mean	109.4	Mean	117.5
O3-B2-O7 109.5(10) O10-B8-O8 115.7(11)	O3-B2-O7	109.5(10)	O10-B8-O8	115.7(11)
O3-B2-O6 111.8(10) O10-B8-O13 118.5(9)	O3-B2-O6	111.8(10)	O10-B8-O13	118.5(9)
O3-B2-O9 113.5(10) O13-B8-O8 118.6(10)	O3-B2-O9	113.5(10)	O13-B8-O8	118.6(10)
O6-B2-O9 106.7(11) Mean 117.6	O6-B2-O9	106.7(11)	Mean	117.6
O6-B2-O7 109.8(10) O1-B9-O11 108.8(11)	O6-B2-O7	109.8(10)	O1-B9-O11	108.8(11)
O7-B2-O9 105.2(10) O1-B9-O13 132.5(13)	O7-B2-O9	105.2(10)	O1-B9-O13	132.5(13)
Mean 109.4 O13-B9-O11 118.7(12)	Mean	109.4	O13-B9-O11	118.7(12)
O2-B3-O15 110.4(11) Mean 120	O2-B3-O15	110.4(11)	Mean	120

Table S5 Selected bond angles (°) for Ba₂Eu₃B_{27- δ}O₄₆ (δ = 2/3).

Sample name		KDP		$Sr_2Tb_3B_{27-\delta}O_{46}$		$Ba_2Eu_3B_{27-\delta}O_{46}$	
		I _{observed}	Icorrected	Iobserved	Icorrected	Iobserved	Icorrected
	1	388	408	371	391	203	223
	2	418	438	333	353	193	213
	3	413	433	324	344	215	235
	4	367	387	395	415	210	230
Measurement	5	473	493	383	403	220	240
number	6	454	474	373	393	200	220
	7	392	412	376	396	176	196
	8	386	406			189	209
	9					243	263
	10					171	191
Average SHG into	ensity		431.375		385		222

Table S6 SHG intensities of the $Sr_2Tb_3B_{27-\delta}O_{46}$ and $Ba_2Eu_3B_{27-\delta}O_{46}$ ($\delta = 2/3$) samples compared with the KDP reference.

Note: Background counts is -20, $I_{observed}$ is the observed SHG intensity in counts, $I_{corrected} = I_{observed} - Background$, and it is the SHG intensity after correction. The KDP, $Sr_2Tb_3B_{27-\delta}O_{46}$ and $Ba_2Eu_3B_{27-\delta}O_{46}$ samples were each repeatedly measured 8, 7 and 10 times, respectively, and the average SHG intensity was used for comparison.

Fig. S1 Crystal structure of $Ba_6Bi_9B_{79}O_{138}$ projected along the [100] direction (a), the $[B_{27}O_{58}]^{35}$ polyborate anionic group (b), a single layer $[B_{27}O_{46}]_n^{11n}$ viewed along the [001] direction (c), and the local environment of each Ba^{2+} and Bi^{3+} site (the numbers correspond to the oxygen atom designations) (d). Ba: black balls; Bi: blue balls; BO₃: magenta triangles; BO₄: green tetrahedra. Note: the structural data of $Ba_6Bi_9B_{79}O_{138}$ are taken from ref.28; the crystal structure of $Ba_6Bi_9B_{79}O_{138}$ is plotted in the same way as that of $Sr_2Tb_3B_{27-8}O_{46}$, and the atom designations and the plot orientation of these two structures remain the same for the convenience of the structural comparison.

Fig. S2 Comparison of the observed XRD pattern of $Ba_2Eu_3B_{27-\delta}O_{46}$ ($\delta = 2/3$) (presented in this work) with that of "BaEuB₉O₁₆" (cited from ref. 21).

Fig. S3 XRD patterns of $Sr_2Tb_3B_{27-\delta}O_{46}$ ($\delta = 2/3$) under different temperatures. \bigstar : an unknown phase.

Fig. S4 XRD patterns of Ba₂Eu₃B_{27- δ}O₄₆ ($\delta = 2/3$) under different temperatures. $\mathbf{\nabla}$: EuBO₃ (PDF 89-7888).

Fig. S5 FE-SEM images, typical EDX spectra, and elemental mapping of the $Sr_2Tb_3B_{27-\delta}O_{46}$ (a) and $Ba_2Eu_3B_{27-\delta}O_{46}$ (b) crystals. Au element comes from the pretreatment process. Note: The single crystal displayed in (b) has a size suitable for the crystal structure determination, which was cut from a big and thick $Ba_2Eu_3B_{27-\delta}O_{46}$ ($\delta = 2/3$) plate.

Fig. S6 Survey (a) and core-level spectra of Sr 3d (b), Ba 3d (c), Tb 3d (d), Eu 3d (e) B 1s (f), and O 1s (g) for $Sr_2Tb_3B_{27-\delta}O_{46}$ (top) and $Ba_2Eu_3B_{27-\delta}O_{46}$ (bottom).